
The VLDB Journal
https://doi.org/10.1007/s00778-022-00733-5

REGULAR PAPER

BugDoc
Iterative debugging and explanation of pipeline

Raoni Lourenço1 · Juliana Freire1 · Eric Simon2 · Gabriel Weber3 · Dennis Shasha4

Received: 17 May 2021 / Revised: 21 October 2021 / Accepted: 21 January 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Applications in domains ranging from large-scale simulations in astrophysics and biology to enterprise analytics rely on
computational pipelines. A pipeline consists of modules and their associated parameters, data inputs, and outputs, which are
orchestrated to produce a set of results. If some modules derive unexpected outputs, the pipeline can crash or lead to incorrect
results. Debugging these pipelines is difficult since there are many potential sources of errors including: bugs in the code,
input data, software updates, and improper parameter settings. We present BugDoc, a system that automatically infers the
root causes and derive succinct explanations of failures for black-box pipelines. BugDoc does so by using provenance from
previous runs of a given pipeline to derive hypotheses for the errors, and then iteratively runs new pipeline configurations to test
these hypotheses. Besides identifying issues associated with computational modules in a pipeline, we also propose methods
for: “opportunistic group testing” to identify portions of data inputs that might be responsible for failed executions (what we
call ), helping users narrow down the cause of failure; and “selective instrumentation” to determine nodes in pipelines that
should be instrumented to improve efficiency and reduce the number of iterations to test. Through a case study of deployed
workflows at a software company and an experimental evaluation using synthetic pipelines, we assess the effectiveness of
BugDoc and show that it requires fewer iterations to derive root causes and/or achieves higher quality results than previous
approaches.

1 Introduction

Computational pipelines are widely used in many domains,
from science to enterprise analytics. These pipelines consist

Amazon: Work done when author was at SAP.

B Raoni Lourenço
raoni@nyu.edu

Juliana Freire
juliana.freire@nyu.edu

Eric Simon
eric.simon@sap.com

Gabriel Weber
gabrwebe@amazon.com

Dennis Shasha
shasha@courant.nyu.edu

1 Tandon School of Engineering, New York University, 370 Jay
Street, Brooklyn, NY 11201, USA

2 SAP, 35 rue d’Alsace, Levallois-Perret 92309, France

3 Amazon, Av. Chedid Jafet, 200, São Paulo 04551065, Brazil

4 Courant Institute of Mathematical Sciences, New York
University, 251 Mercer Street, New York, NY 10012-1110,
USA

of modules—with associated parameters and data inputs—
that are orchestrated to produce a set of results. In our data-
driven world, such results often form the basis of conclusions
that lead to actions. If one or more modules in a pipeline
produce erroneous or unexpected outputs, these conclusions
may be incorrect. Thus, it is critical to identify the causes of
failures and obtain explanations for pipeline behavior.

Discovering the root causes of failures is challenging
because problems can come from many different sources,
including bugs in the code, input data, software updates, and
improper parameter settings. Connecting the erroneous result
to its root cause is especially difficult for long pipelines or
when multiple pipelines are composed, forming cascading
dependency chains. Consider the following real but sanitized
examples.
Example 1 (Enterprise analytics) In an application deployed
by amajor software company, plots for sales forecasts derived
by an analytics group showed a sharp decrease compared
to historical values. After much investigation, the problem
was tracked down to a data feed (coming from an external
data provider), whose temporal resolution had changed from
monthly to weekly. The change in resolution affected the
predictions of a machine learning pipeline, leading to the
incorrect forecasts reflected in the plots.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-022-00733-5&domain=pdf
http://orcid.org/0000-0001-7774-4487


R. Lourenço et al.

Example 2 (Exploring supernovas) In an astronomy experi-
ment, some visualizations of supernovas presented unusual
artifacts that could have indicated a discovery. The exper-
imental analysis consisted of multiple pipelines run at
different sites, including data collection at the telescope site,
data processing at a high-performance computing facility,
and data analysis run on the physicist’s desktop. After spend-
ing substantial time trying to verify the results, the physicists
found that a bug introduced in the new version of the data
processing software had caused the artifacts.

Example 3 (Designing amachine learning pipeline)Machine
learning pipelines include a variety of components (e.g.,
training data, imputation methods for missing values, clas-
sification techniques). Failures as manifested by poor recall/
precision scores may result from a poor choice of methods
or hyperparameter values, as well as incorrectly labeled or
unbalanced training examples.

To debug complex pipelines, during development or after
deployment, users currently expend considerable effort rea-
soning about the effects of the many possible different
settings. This requires them to tune and execute new pipeline
instances and test hypotheses manually, which is tedious,
time-consuming, and error-prone.

The need for systematic iteration Figure 1 shows a generic
template for a machine learning pipeline and a log of dif-
ferent instances that were run with their associated results.
The pipeline reads a dataset, imputes missing values, creates
and executes an estimator, and computes the F-measure score
using 10-fold cross-validation. A data scientist uses this tem-
plate during pipeline design to explore multiple estimators
and imputation strategies for different types of input data,
and ultimately, derive a pipeline instance that leads to high
scores. This requires the creation and execution of multiple
instances of the template that use different combinations of
parameters values, training datasets, imputer strategies, and
learning classifiers.

Fig. 1 Machine learning pipeline and its execution provenance. A data
scientist will in general experiment with various input datasets, imputa-
tion strategies, and classifier methods in a classification pipeline. After
cross-validation, the pipeline outputs a quality score. An instance fails
if the execution crashes (e.g., CP3) or the score is low (e.g., CP4)

By examining the provenance of the runs, we can observe
that: gradient boosting leads to low scores for two of the
datasets (Dataset 1 and Dataset 2); decision trees work well
for both the Dataset 2 and Dataset 3; and logistic regression
leads to a high score for Dataset 1 and Dataset 3. This sug-
gests a few hypotheses: there may be a problemwith the gra-
dient boosting module for the selected imputation methods;
or it is not a good learner for the specific datasets; decision
trees provide a suitable compromise for different data; and
logistic regression achieves the best score. Because each run
used different parameters for each method over the various
datasets and strategies, a definitive conclusion has to await
testing of additional combinations of parameters values.

Finding explanations of pipeline failure: challenges As the
above examples illustrate, there aremany potential causes for
a pipeline to fail. Examining the provenance of a pipeline can
help users derive hypotheses for the causes of the observed
behavior and provide hints for debugging. Prior work used
provenance to explain errors in computational processes that
derive data [22,55]. However, to test these hypotheses and
obtain complete (and accurate) explanations, new pipeline
instances must be executed that vary the different compo-
nents of the pipeline. For example, to verify whether logistic
regression is indeed the best approach, we would need to
run it with additional combinations of datasets and imputer
strategies. Doing so manually is time-consuming and error-
prone, but automating this process is challenging.

Trying all possible combinations of parameter-values
leads to a combinatorial explosion of instances to execute
(exponential in the number of parameters) and therefore can
be prohibitively expensive. Thus, a critical challenge lies in
designing a provably efficient strategy for finding root causes
in realistic computational pipelines.

Without loss of generality for any specific behavior, we
focus this paper on fault-causing scenarios.

Algorithms for root cause identification To address these
challenges, we designed BugDoc, an approach that makes
use of provenance and algorithmically produced tests to (i)
infer the root causes of failures and (ii) derive succinct expla-
nations of failures in pipelines [42–44].

As noted above, a naive approach to this problem would
explore all possible parameter-values, requiring a number of
iterations that is exponential in the number of parameters.
BugDocmakes uses of two algorithms that efficiently search
the space of parameter values for a pipeline to identify root
causes. The first one, called Shortcut, uses a minimal pair-
style strategy to find root causes consisting of conjunctions
of parameter-equality-value pairs (e.g., Estimator = Logistic
Regression and Input Dataset Instance = Dataset 1 ) using a
number of iterations that is linear in the number of parame-
ters. The second one, Debugging Decision Trees, constructs
an evolving decision tree whose leaves indicate success

123



BugDoc iterative debugging...

or failure and whose nodes are tests on parameter values.
Debugging Decision Trees can find root causes consisting of
inequalities (e.g., of the form Param1 > x and Param2 �= y).
While Debugging Decision Trees can require a number of
iterations that is exponential in the number of parameters, in
practice that rarely happens. Our algorithms derive succinct
explanations involving only the parameter-comparator-value
combinations that lead to failure, thus helping human debug-
gers focus on problem areas.

From algorithms to practiceWe carried out an evaluation in
which we used BugDoc to identify the causes of problems
that arose inworkflows used in production by a large software
company. should we also talk about deployment of bugdoc?
or should we leave that for an industrial paper we can submit
to sigmod? The evaluation confirmed the effectiveness of the
algorithms we designed, and it also uncovered new, practical
challenges in debugging pipelines and deploying theBugDoc
system in an enterprise environment, as well as opportunities
to further improve efficiency.

When BugDoc identifies a root cause consisting of a par-
ticular instance of a dataset, the immediate question is which
portion of that dataset causes the problem. This is particu-
larly challenging for pipelines that process large volumes of
data—simply reporting that the problem lies in some instance
of input data still requires users to identify the portions of the
data that might that cause the behavior. We propose a new
algorithm, called Opportunistic Group Testing, that heuristi-
cally determines the subset of a dataset instance that causes a
pipeline to fail, thus making it easier for developers to iden-
tify and correct the problem.

We also observed that for many pipelines, we can prune
the search process by selectively instrumenting one or more
interior nodes in the pipeline with failure detectors. This
instrumentation canmakedebuggingmore efficient, allowing
the exploration to focus on the pipeline components that are
directly connected with the behavior of interest. Intuitively,
if the failure detector at an interior node n1 indicates no fail-
ure, but the final node n2 indicates a failure, then BugDoc
can focus attention on the parameters that follow n1. The
Selective Instrumentation heuristic analyzes the parameter
dependencies induced by the pipeline topology and suggests
nodes in the pipeline to instrument to reduce the search time.
Finally, and perhaps most obviously, we extend BugDoc to
exploit parallelism in order to reduce the search time.

Contributions and outline In this paper, we provide a com-
prehensive overview of our previous work [42–44], both
the underlying methods and the open-source system that
implements them. As new contributions, we describe the
evaluation we carried out in collaboration with a major soft-
ware company inwhichweusedBugDoc to debugproduction
pipelines. In addition, we introduce Opportunistic Group
Testing for data debugging and selective instrumentation for

search space reduction and discuss their design, implemen-
tation, and evaluation.

The remainder of this paper is organized as follows. We
review relatedwork in Sect. 2. Section 3 introduces themodel
we use for computational pipelines and formally defines the
problem we address. In Sect. 4, we present algorithms to
search for simple and complex causes of failures. We further
isolate likely root causes to subsets of data by Opportunistic
GroupTesting in Sect. 5. Section 6 discusses Selective Instru-
mentation. Our methods are combined in a system specified
in Sect. 7, and applied to enterprise data workflows in a case
study presented in Sect. 8. We compare BugDoc with the
state of the art in Sect. 9 and conclude in Sect. 10, where we
outline directions for future work.

2 Related work

Debugging data and pipelines Recently, the problem of
explaining query results and interesting features in data has
received substantial attention in the literature [5,16,22,47,
55]. Some have focused on explaining where and how errors
occur in the data generation process [55] and which data
items are most likely to be causes of relational query out-
puts [47,56]. Others have attempted to use data to explain
salient features in data (e.g., outliers) by discovering rela-
tionships among attribute values [5,16,22]. Dagger [50] takes
a different approach and tries to adapt traditional software
debugging strategies to investigate data—it provides white-
box primitives for human debugging of data transformations.
In contrast, BugDoc aims to diagnose abnormal behavior in
computational pipelines that may be due to errors in data,
programs, or sequencing of operations. When white-box
approaches [50] are possible (requiring both source code and
competent engineers), BugDoc could be used to identify the
troublesome program code and then the white-box approach
could be used to debug it.

Previous work on pipeline debugging has relied solely
on execution histories to identify problematic parameter set-
tings or inputs; they did not iteratively create and test new
workflow instances to ascertain whether their explanations
are accurate. Bala and Chana [6] applied several machine
learning algorithms to predict whether a particular pipeline
instance will fail to execute in a cloud environment. The goal
is to reduce the consumption of expensive resources by rec-
ommending against executing the instance if it has a high
probability of failure. The system does not attempt to find
the root causes of such failures. Chen et al. [14] developed
a system that identifies problems by finding the differences
between execution histories (encoded as trees) of good and
bad runs. However, these differences do not necessarily iden-
tify root causes, though they often contain them. contain root

123



R. Lourenço et al.

causes butmay also include false positives—components that
do not cause the problem.

Some systems have been developed to debug specific
applications. Viska [28] helps users identify the underlying
causes for performance differences for a set of configura-
tions. Users infer hypotheses by exploring performance data
and then test these hypotheses by asking questions about
the causal relationships between a set of selected features
and the resulting performance. Thus, Viska can be used to
validate hypotheses but not identify root causes. Molly [1]
combines the analysis of lineage with SAT solvers to find
bugs in fault-tolerance protocols for distributed systems. It
simulates failures, such as permanent crash failures, mes-
sage loss, and temporary network partitions, in order to
test fault-tolerance protocols over a specified period. AID
[23] uses causal inference and group testing to apply inter-
ventions on runtime conditions of programs to find root
causes of software bugs. Its current implementation relies
on a mechanism that extracts temporal predicates from .NET
applications. Another counterfactual work is CADET [36]
that aims to find root causes of non-functional faults (e.g.
latency, energy dissipation) in highly configurable system
architectures (hardware and software).

Although not designed for computational pipelines, Data
X-Ray [55] provides a mechanism for explaining the sys-
tematic causes of errors in the data generation process. The
system finds shared features among corrupt data elements
and produces a diagnosis of the problems. Given the prove-
nance of pipeline instances together with error annotations,
Data X-Ray derives explanations consisting of features that
describe the parameter-value pairs responsible for the errors.
ExplanationTables [22] provides explanations for binary out-
comes. Like Data X-Ray, it forms hypotheses based on a
log of executions, but it does not propose new ones. Based
on a table with a set of categorical columns (attributes)
and one binary column (outcome), the algorithm produces
interpretable explanations of the causes for the outcome in
terms of the attribute-value pairs combinations. The expla-
nations consist of a disjunction of patterns, and each pattern
is a conjunction of attribute-value pairs. As discussed in
Sect. 9, BugDoc produces explanations that are similar to
those of Data X-Ray and Explanation Tables, but they are
also minimal and able to express inequalities and nega-
tions. Furthermore, BugDoc employs a systematic method to
intelligently generate new instances that enable it to derive
concise explanations that are root causes for a problem.

Hyperparameter tuning Our work is related algorithmically
to approaches from hyperparameter tuning [9,10,20,51,52],
since we can view the generation of new pipeline instances
for debugging as an exploration of the space of its hyper-
parameters. Bayesian optimization methods are considered
state of the art for the hyperparameter optimization problem

[8,10,20,51,52]. These methods approximate a probability
model of the performance outcome given a parameter config-
uration that is updated from a history of executions. Gaussian
Processes andTree-structuredParzenEstimator are examples
of probability models [9] used to optimize an unknown loss
function using the expected improvement criterion as acqui-
sition function. To do this, they assume the search space is
smooth and differentiable. This assumption, however, does
not hold in general for arbitrary computational pipelines.
Moreover, our goal is not to identify bad configurations
(we usually have those, to begin with), but to identify the
root cause(s), which are due to a subset of the parameters.
Optimization, by contrast, seeks entire (in their case, good)
configurations.

Examples of hyperparameter tuning techniques include
OtterTune and BOAT. OtterTune [54] is a system that uses
supervised learning techniques to find optimal settings of
database system administrator knobs given a database work-
load and a set of metrics (optimization functions). BOAT
[19] also optimizes database system configurations using
BayesianOptimization.However, instead of starting the opti-
mization with a standard Gaussian process, it allows a user
to input an initial probabilistic model that exploits previous
knowledge of the problem.

Software testing State-of-the-art techniques for software
testing [25,34], statistical debugging [40,60], and bug local-
ization [3,4,29] are often application-specific and/or require
a user-defined test suite. Some approaches require the instru-
mentation of binaries or source code in the form of predicates
that can be observed during computational runs [40,60].
Such information, if available, can be helpful to localize and
explain bugs.BugDoc, however, does not assume any knowl-
edge of the internal code of the computational processes: it
was designed to debug black-box pipelines where we can
observe only the inputs and outputs. Hence, our explana-
tions are expressed in terms of input parameters. However,
an interesting direction for future work would be to con-
sider variables (or predicates) that can be observed but not
manipulated in our formalism to generate potentially richer
explanations. Approaches have also been proposed for bug
localization in a black-box scenario; however, these were
designed for specific applications and environments, e.g.,
Pinpoint for J2EE [15]. By contrast, BugDoc was designed
to support language-independent workflows.

Automated test generation techniques also derive new
tests (or instances in our terminology). However, they do not
aim to identify root causes (see, e.g., [24,26,31]). Exceptions
are Causal Testing [34] and Delta Debugging [2]. Similar
to BugDoc, Causal Testing aims to help users identify root
causes for problems. However, it requires the user to specify
a (single) suspect variable to be investigated in a white-box
scenario. Delta Debugging also tests one root cause at a time,

123



BugDoc iterative debugging...

looking forminimal pairs of conflicting programs configura-
tions (one that fails and other that succeeds). In distinction,
BugDoc searches for potential causes for failures in a black-
box scenario. Further, these causes may include multiple
variables and value assignments.

BugDoc helps a user to trace back the potential cause of
a given behavior to a component of a pipeline. Nevertheless,
since a pipeline can orchestrate a multitude of sophisticated
tools, to identify and correct the bug, it may be necessary
to drill down into an individual component. If source code
is available for that, traditional debugging techniques can be
used.

Identifying denial constraintsOur approach is also related to
the discovery of denial constraints in relational tables [11,17],
particularly functional dependencies. The similarity can be
illustrated as follows: imagine that there is a column indicat-
ing “successful instance” or “failed instance” for some set of
parameter-values. Call it Success Or Fail. If a failure occurs
exactly when parameter A = 5 and B = 6, then that will
manifest as a functional dependency AB −→ Success Or Fail,
i.e., the result is a function of parameters A and B. How-
ever, if the failure happens when a disjunction holds, e.g.,
A = 5 or B = 6, the same functional dependency will be
inferred. No more minimal functional dependencies such as
A −→ Success Or Failwill be inferred, because, for example,
when A = 4, there can be success or failure depending on
theB value. Thus, functional dependencies are not expressive
enough to characterize root causes.

3 Definitions and problem statement

Intuitively, given a set of computational pipeline instances,
some of which lead to bad or questionable results, our goal
is to find the root cause(s) of failure(s) among the parameter
values already tried, possibly by creating and executing new
pipeline instances.

Definition 1 (Pipeline, instance, parameter- value
pairs, value universe) A computational pipeline (or
workflow) CP is (i) a collection of programs each of which
contains a set of manipulable parameters P (i.e., including
hyperparameters, versions of programs, computational mod-
ules) and (ii) a further collection of data sources, each of
which is considered a parameter whose values are instances
of those data sources (e.g., in Fig. 1, Dataset is the param-
eter and Dataset 1, Dataset 2 are values). Each parameter is
associated with a node and is uniquely identifiable. Param-
eters corresponding to files can feed into different nodes in
which case changing a file instance will change what is fed
into all such nodes.

The programs and data sources are represented as nodes
in a directed (possibly cyclic) graph where an edge (n, n′)

indicates that the output of node n is an input of n′ (either
because the output of n streams into n′ or that n completes
before n′ begins). Parallel execution of a single instance is
possible provided it has the same semantics as any serial
execution consistent with the graph topology. In other words,
parallelism should not interfere with determinism.

We denote byCPi a pipeline instance ofCP that defines
values for the parameters for a particular run of CP . Thus,
an instanceCPi is associated with a list of parameter-value
pairs Pvi containing an assignment (p, v) for each p ∈ P .
We denote by CPi [p] = v the assignment of value v for
parameter p in the instance CPi . For each parameter p ∈ P ,
the parameter-value universe Up is the set of all values
assigned to p by any pipeline instance thus far, i.e., Up =
{v|∃i(p, v) ∈ CPi }. The Universe U = {(p,Up)|p ∈ P}.

As we discuss in Sect. 7, a user may expand the
parameter-value universeU by explicitly defining the param-
eter domains. These domains can be discrete, e.g., a particular
parameter can take integer values between 1 and 10. They can
also be continuous, e.g., real numbers between 0 and 1000.
However, even in the case of continuous parameter domains,
BugDoc will analyze only the specific values already avail-
able in the history of correct and incorrect executions, i.e.,
the universe of values U . Untried values may also result in
bugs, but BugDoc tries to find only the causes for bugs that
have already arisen.

Note that BugDoc treats files as parameters and instances
of files as values: the algorithms treat conventional parame-
ters (e.g., options on imputation methods) and data parame-
ters uniformly. As we discuss “Sect. 5”, Opportunistic Group
Testing performs data debugging (within a file) in a second
phase.

Definition 2 (Evaluation)Let E be a procedure that evalu-
ates the result of an instance such that E(CPi ) = succeed
if the results are acceptable, and E(CPi ) = fail otherwise.
Normally, the evaluation procedure will be code that looks at
some property of some result(s) of a given pipeline instance.

Intuitively, a bug is some collection pipeline instances that
evaluate to fail. Note that this is a deterministic definition
that doesn’t capture intermittent failures, e.g., timing bugs or
non-deterministic failures. Even in such cases, however, if
the bugs occur often enough, then BugDocmay help, though
without guarantee. The goal of BugDoc is to find the root
causes (and minimal root causes) of bugs.

Definition 3 (Hypothetical root cause of failure)
Given a set of instances G = CP1, ...,CPk and associ-
ated evaluations E(CP1), ...., E(CPk), a hypothetical root
cause of failure is a set C f consisting of a Boolean con-
junction of parameter-comparator-value triples (e.g., a triple
may be of the form A > 5) which obey the following con-
ditions among the instances G: (i) there is at least one CPi

123



R. Lourenço et al.

such that Pvi satisfies C f and E(CPi ) = fail; and (ii) if
E(CPi ) = succeed, then the parameter-values pairs Pvi
of CPi do not satisfy the conjunction C f .

To illustrate the converse of point (ii), if a would-be C f

= A > 5 and B = 7, and CPi has the parameter values
A = 15 and B = 7 and succeeds, then C f does not obey
condition (ii) of a hypothetical root cause of failure. C f is
calledhypothetical because, basedon the evidence so far (i.e.,
the history of pipeline instances in G), C f leads to fail,
but further evidence may refute that hypothesis.

Definition 4 (Definitive root cause of failure) A
hypothetical root cause of failure D is a definitive root cause
of failure if there is no instance CPq from the universe U
with the property that E(CPq) = succeed and Pvq satis-
fies D. Informally, no pipeline instance that includes D as a
subset of its parameter-value settings leads to succeed.

Definition 5 (Minimal definitive root cause) A
definitive root cause D is minimal if no proper subset of D is
a definitive root cause. For the sake of brevity, we sometimes
drop the word “Definitive” and call D a minimal root cause.

The example in Fig. 1 illustrates these concepts using the
simple machine learning pipeline from the introduction. A
possible evaluation procedure would test whether the result-
ing score is greater than0.6. In this case,Databeingdifferent
fromDataset 3 and Estimator equal to gradient boosting
is a hypothetical root cause of failure. To determine if this is
a definitive root cause, we must check that no instance lead-
ing to succeed can be created with these parameter values.
Section 4 presents algorithms that determine whether a root
cause is definitive and minimal.

We note that the root causes defined here should not be
interpreted as the actual causes of pipeline problems as char-
acterized by causality theory [48]. The goal of BugDoc is
to help the user identify sets of parameter-value pairs for
which a black-box pipeline will always fail. However, the
root causes we output are not counterfactuals [39], i.e., the
pipeline would not necessarily succeed had the root cause
not been observed, because perhaps another root cause may
come into play. BugDoc can discover disjunctive combina-
tions of configurations that lead to failure.
Problem definitionGiven a computational pipelineCP (e.g.,
a query, script, simulation) and a set of parameter-value pairs
associatedwith previously-run instancesG = CP1, ...,CPk ,
we consider two goals: (i) to find at least one minimal defini-
tive root cause, or (ii) to find all minimal definitive root
causes. Our cost measure for both goals is the number of exe-
cuted pipeline instances beyond any given, previously-run
instances. In other words, we aim to achieve our debug-
ging goals at a minimum cost in terms of number of pipeline
instances tried.

4 Debugging algorithms

Given a set of pipeline instances, BugDoc identifies minimal
definitive root causes for failures. As noted above, a naive
strategy would be to try every possible parameter-value pair
combination of the parameter-value universe, requiring the
testing of a number of pipeline instances that is exponential
in the number of parameters.

Instead, BugDoc uses two iterative pipeline debugging
algorithms in turn. The first, called Shortcut, discovers
definitive root causes (which we sometimes abbreviate to,
simply, bugs) consisting of a single conjunction of parameter-
equality-value triples. The second, called Debugging Deci-
sion Trees and introduced in [42], discovers more complex
definitive root causes involving inequalities (e.g., A takes
a value between 5 and 13). When a single conjunction
of parameter-values constitutes a definitive root cause, the
Shortcut algorithm finds that root cause using fewer pipeline
instances than Debugging Decision Trees or the state of the
art.

4.1 Looking for simple root causes: the shortcut
algorithm

The Shortcut algorithm, shown in Algorithm 1, starts from
a pipeline instance CPf that evaluates to fail. It then uses
pipeline instances that succeeded and are disjoint , i.e., they
share no parameter-values, from CPf to construct new tests.

Algorithm 1: Shortcut Algorithm
Input: CP I , the set of pipeline instances in the execution history

characterized by their parameter-values
Input: E , the evaluation function
Input: P , list of parameters
Input: CPf , pipeline instance evaluated as fail
Input: CPg , pipeline instance evaluated as succeed disjoint to

CPf
Output: D, asserted minimal definitive root cause
/* Initialization */

1 CPcurrent ← CPf ;
2 for p ∈ P do
3 CPcurrent′ ← CPcurrent;
4 CPcurrent′ [p] ← CPg[p];
5 if E(CPcurrent′ ) = fail then
6 CPcurrent ← CPcurrent′ ;
7 end
8 end
9 D ← CPcurrent ∩ CPf ;
/* check if proper subset from CPI */

10 for CPi ∈ CP I do
11 if D ⊆ CPi and E(CPi ) = succeed then
12 return ∅
13 end
14 end
15 return D

123



BugDoc iterative debugging...

Definition 6 (Disjoint instances) Two pipeline instances
CPx and CPy are disjoint if CPx [p] �= CPy[p], for each
p ∈ P associated to CP .

Intuitively, the Shortcut algorithm starts with the failing
pipeline instance CPf and a disjoint successful instance
CPg . The existence of such a disjoint succeeding pipeline
instance is a requirement for the theoretical results that follow
and is called the Disjointness Condition. If the Disjointness
Condition does not hold, then this method may still be useful
as a heuristic.

The current instance CPcurrent is initialized to CPf .
Then, using some order among parameters, for each param-
eter p, an instance

CPcurrent ′

is executed that consists of a copy of CPcurrent except that
CPcurrent ′ [p] = CPg[p]. If the instance CPcurrent ′ fails,
then CPcurrent is changed to CPcurrent ′ and the next param-
eter is considered. The intuition is that the value of p in CPf

did not cause the failure. In the end, the definitive minimal
root cause asserted by the Shortcut will be a subset of the
pipeline instanceCPf that is still present in the final instance
of CPcurrent . We denote that subset as D.

The algorithm then performs a sanity check to seewhether
any superset of the hypothetical minimal root cause D is
in an already executed successful execution. If so, then the
Shortcut algorithm has found a proper subset of the definitive
minimal root cause, but not an actual definitive minimal root
cause.

As noted above, if the Disjointness Condition does not
hold, then the Shortcut algorithm can still be used as a heuris-
tic: take an instance that differs in as many parameter-values
as possible. While the theoretical results that follow will not
hold, this will often be good enough, as the experimental
results show (Sect. 9).

Here is an example that illustrates how the Shortcut algo-
rithm works.

Example 4 Consider the machine learning pipeline in Fig. 1
again. Here, the user is interested in investigating pipelines
that lead to low F-measure scores and defines an evaluation

function that returns succeed if score ≥ 0.6 and fail
otherwise.

For this pipeline, the user investigates three parame-
ters: Dataset, the input data to be classified; Imputer
Strategy, whether missing values will be imputed with
the mean or the most frequent value of a column; and
Estimator, the classification algorithm to be executed.

Table 1 shows the execution history (also called prove-
nance) of the pipeline.

From the initial traces shown in Table 1, the Shortcut
algorithm chooses two disjoint instances with different eval-
uations:

CPg = {(Dataset, Dataset 3),
(Imputer Strategy, Frequency),
(Estimator, Logistic regression)}
CPf ={(Dataset, Dataset 2),
(Imputer strategy, Mean),
(Estimator, Gradient boosting)}

Examining parameter Dataset, we replace its corre-
sponding value in the current instance to be executed from
Dataset 2 to Dataset 3. Because the execution evaluates to
succeed, suggesting that the replaced parameter-value was
important for fail, we cannot keep this replacement in the
current instance, sowe roll back toDataset 2. Similarly, when
we update the value of parameter Imputer Strategy to
Frequency, the instance evaluation also succeed, so we
discard that replacement as well.

However, when Estimator is changed to Logistic
Regression, the resulting configuration still evaluates to
fail. This suggests thatEstimator is likely not a cause of
the bug. The algorithm then yields the following root-cause:
(Dataset,Dataset 2) and (Imputer Strategy,Mean).

Table 2 displays all pipeline instances evaluated, including
the new instances generated by the Shortcut algorithm.

For Pipelines with singleton parameter-value root causes
as in Example 4, the algorithm will find a minimal definitive
root cause. It will always work for singleton root-causes as
well. This is a common base case for software that has been
working but has recently been modified.

Table 1 An initial (given) set of
classification pipelines instances
that return succeed if
score ≥ 0.6 and fail
otherwise

Dataset Imputer strategy Estimator Score Evaluation

Dataset 1 Mean Logistic regression 0.9 succeed

Dataset 2 Frequency Decision tree 0.8 succeed

Dataset 2 Mean Gradient boosting NAN fail

Dataset 1 Frequency Gradient boosting 0.2 fail

Dataset 3 Mean Decision tree 0.7 succeed

Dataset 3 Frequency Logistic regression 0.9 succeed

123



R. Lourenço et al.

Table 2 Set of classification pipelines instances including the new instances created by Shortcut by substituting values one at a time of parameters
in CPf (Dataset 1, Frequency, Gradient Boosting) by corresponding values in CPg (Dataset 3, Mean, Decision Tree)

Dataset Imputer strategy Estimator Score Evaluation Origin

Dataset 1 Mean Logistic regression 0.9 succeed Provenance

Dataset 2 Frequency Decision tree 0.8 succeed Provenance

Dataset 2 Mean Gradient boosting NAN fail Provenance

Dataset 1 Frequency Gradient boosting 0.2 fail Provenance

Dataset 3 Mean Decision tree 0.7 succeed Provenance

Dataset 3 Frequency Logistic regression 0.9 succeed Provenance

Dataset 3 Mean Gradient boosting 0.8 succeed Replacing dataset 2 by dataset 3

Dataset 2 Frequency Gradient boosting 0.9 succeed Replacing mean by frequency

Dataset 2 Mean Logistic regression NAN fail Replacing gradient boosting by logistic regression

The rightmost column (Origin) indicates if the instance was in the provenance or it was created by any step of our algorithms

Theorem 1 If all definitive root causes are singleton para-
meter-values and the disjointness condition holds, then the
shortcut algorithm will always assert exactly a minimal
definitive root cause.

Proof By construction. If all definitive root causes are single-
tons, then CPg cannot contain any element of a root cause,
otherwise E(CPg) = fail. By contrast, CPf must con-
tain at least one root cause. When iterating over parameter
p, the Shortcut algorithm will replace CPf [p] by CPg[p]
(because the values must be different on all parameters p by
the Disjointness Condition) while there is still one root cause
in CPcurrent. Therefore, by the end of the algorithm, only the
root cause would remain. �

Guarantees of the shortcut algorithm For bugs that may
depend on disjunctions of conjunctions, the Shortcut algo-
rithm may be too aggressive in the sense that it can return
a root cause D that is a proper subset of an actual minimal
definitive root cause of failure.

Example 5 Suppose that we have twominimal definitive root
causes:

1. D1 = {(p1, v1), (p2, v2)}
2. D2 = {(p1, v′

1), (p3, v3)}

Consider also a computational pipeline consisting of three
parameters P = {p1, p2, p3}, and CPf and CPg as follows:

– CPf = {(p1, v1), (p2, v2), (p3, v3)}
– CPg = {(p1, v′

1), (p2, v
′
2), (p3, v

′
3)}

Clearly D1 ⊆ CPf ; therefore, it is the root cause of the
failure of CPf . However, when iterating over parameter
p1, the Shortcut algorithm updates CPcurrent[p1] = v′

1. But
E(CPcurrent′) = fail because D2 ⊆ CPcurrent′ . The same
is observed when the algorithm iterates over parameter p2.

Consequently, the algorithm outputs D = {(p3, v3)} as the
root cause, but that is a proper subset of theminimal definitive
root cause D2.

In this case, we say that D is a truncated assertion, i.e., it
is too short. Note, however, D will never be too long. Trun-
cated assertions are still heuristically useful, because they
uncover reasons for bugs, but may miss part of the reason
for a bug. So we want to characterize when Shortcut behaves
properly.

Theorem 2 The Shortcut algorithm never asserts a superset
of a minimal definitive root cause, provided the Disjointness
Condition holds.

Proof By contradiction. We assume that ∃(p, v) ∈ D, such
that (p, v) is not a necessary condition for an instance to
fail. By construction of D in the shortcut algorithm, if
(p, v) ∈ D then CPf [p] = v and CPg[p] �= v by the
Disjointness Condition.

When the Shortcut algorithm iterates over parameter p,
we observe CPcurrent[p] = CPf [p] and CPcurrent’[p] =
CPg[p]. Hence, since (p, v) is not needed for an instance
to fail, at this iteration, E(CPcurrent’) = fail, so (p, v)

would be removed from current and therefore would never
be asserted to be part of the root cause. Contradiction. �


To address the problem of truncated assertions, let us first
observe another case when they do not arise, beyond the
singleton case of Theorem 1.

Example 6 Consider a slight modification of Example 5,
where we add another parameter-value pair to D2, defining
the following scenario:

– D1 = {(p1, v1), (p2, v2)}
– D2 = {(p1, v′

1), (p2, v
′′
2 ), (p3, v3)}

– CPf = {(p1, v1), (p2, v2), (p3, v3)}
– CPg = {(p1, v′

1), (p2, v
′
2), (p3, v

′
3)}

123



BugDoc iterative debugging...

When iterating over parameter p1, the Shortcut algorithm
does not update CPcurrent[p1] with v′

1 since with that value
E(CPcurrent′) = succeed, because D1 � CPcurrent′ and
D2 � CPcurrent′ . Similarly, the value of CPcurrent[p2] is not
changed. Only CPcurrent[p3] is updated to v′

3. Thereafter, the
algorithm would assert D = {(p1, v1), (p2, v2)} = D1 as
minimal definitive root cause, which is correct.

InExample 6, both D1 and D2 contain values for p1 and p2
that are distinct from their counterpart in the other definitive
root cause, i.e., D1[p1] �= D2[p1] and D1[p2] �= D2[p2].
We say that D1 and D2 are sufficiently different. This charac-
teristic directly influences when the Shortcut algorithm will
yield truncated assertions and is formally defined as follows.

Definition 7 (Sufficiently different instances) Two definitive
root causes Dx and Dy are sufficiently different if (i) they
share at least two properties and (ii) for all properties they
have in common they differ in their values. Formally,

(i) |PDx ∩ PDy | ≥ 2;
(ii) and D1[p] �= D2[p],∀p ∈ PDx ∩ PDy .

Theorem 3 If the Disjointness Condition holds and all min-
imal definitive root causes are pairwise sufficiently different,
then the shortcut algorithm will never produce a truncated
assertion.

Proof By contradiction. By definition, there exists a minimal
root cause Dx such that Dx ⊆ CPf . Let’s assume that the
shortcut algorithm returns a root cause D that is a proper sub-
set of Dx (i.e., a truncated assertion). Then, let p be the first
parameter in PDx − PD , such that CPcurrent’[p] = CPg[p]
and E(CPcurrent’) = fail. Such a parameter must exist
based on the shortcut procedure. By the Disjointness Con-
dition, CPcurrent’[p] �= Dx [p]. Thus, there exists another
minimal root cause Dy �= Dx such that Dy ⊆ CPcurrent’.
However, since Dy and Dx are sufficiently different (by
assumption), by point (i) ofDefinition 7, there exists a param-
eter p′ �= p such that p′ ∈ PDx ∩ PDy and Dy[p′] =
CPcurrent’[p]. But because p is the first parameter tested by
shortcut by assumption, the value of p′ has not been changed
before p in shortcut. Thus, we also have CPcurrent’[p] =
Dx [p], which contradicts point (ii) of Definition 7. Hence,
D cannot be a proper subset of Dx . �

Stacked shortcut algorithm Clearly, we cannot be sure a
priori that all definitive root causes are single parameter-
value pairs or that the minimal definitive root causes are
sufficiently different, either of which would ensure that the
Shortcut makes no truncated assertions. However, even if
neither holds, we may be able to avoid truncated assertions
by a specific reapplication of Shortcut.

To see how, we first observe that Shortcutmakes truncated
assertions only if all elements of a minimal root cause are

contained in the union ofCPf andCPg . This union property
is formally described in Theorem 4.

Theorem 4 The shortcut algorithm will yield a truncated
assertion for a given CPf and CPg only if there is a mini-
mal definitive root cause D, such that D ⊆ CPf ∪CPg and
D �⊂ CPf .

Proof In the course of the Shortcut algorithm, all property
values in CPcurrent come from CPf or CPg . By construc-
tion, the asserted root cause is the intersection of CPf and
CPcurrent. So if the asserted root cause is truncated, CPcurrent
must have elements from CPg that cause CPcurrent to eval-
uate to fail. Therefore there is a minimal definitive root
cause in the union of CPf and CPg . �


Based on the previous theorems, we extended the shortcut
algorithm to the Stacked Shortcut algorithm which basically
runs a given failed configuration CPf individually against
multiple disjoint good configurations and then takes the union
of the inferred root causes.Algorithm2 shows the algorithm’s
pseudo-code. Stacked Shortcut is guaranteed to produce a
correct solution if BugDoc can find k mutually disjoint suc-
cessful instances, and there are at most k distinct minimal
root causes.

Recall that two instancesCP1 andCP2 are disjoint if they
have different values for all properties. That is, for each p,
CP1[p] �= CP2[p]. A set of instances is mutually disjoint if
every pair of instances are disjoint.

Algorithm 2: Stacked Shortcut Algorithm
Input: CP I , the set of pipeline instances in the execution history

characterized by their parameter-values
Input: E , the evaluation function
Input: P , list of parameters
Output: D, asserted minimal definitive root cause
/* Initialization */

1 D ← ∅;
/* Find an instance that evaluates to fail

*/
2 Let CPf be such that CPf ∈ CP I , and E(CPf ) = fail;
/* Find k successful instances disjoint

with respect to CPf and mutually
disjoint if possible */

3 CPG ← {CP1,CP2, ...,CPk}, such that CPi , for
i ∈ {1, 2, ...k}, are mutually disjoint and E(CPi ) = succeed;

4 for CPg ∈ CPG do
5 D ← D ∪ shortcut(CP I , E, P,CPf ,CPg);
6 end
7 return D

Theorem 5 Suppose a set of iteration instances C Pi , for
i ∈ {1, 2, ..., k}, have the properties that (i) E(CPi ) =
succeed (ii) is disjoint from CPf , and (iii) for any i, j
such that i �= j,CPi and CPj are disjoint. If there are fewer

123



R. Lourenço et al.

than or equal to k distinctminimal definitive root causes, then
the Stacked Shortcut Algorithm will never make a truncated
assertion.

Proof By construction. For each other minimal definitive
root cause D � CPf , there can be at most one CPi with
the property that D ⊆ CPi ∩ CPf , since all instances are
disjoint. Because there are fewer than k distinct minimal
definitive root causes by assumption, there exists at least one
CPi , which does not have the union property with respect
to CPf . So, by the construction of D, the Stacked Shortcut
algorithm will yield an assertion (candidate root cause) that
is not truncated. �


Note that even if all successful instances are not mutually
disjoint (perhaps because some parameters have very few
values), each additional call to shortcut (i.e., each call to
Shortcut with a different disjoint good instance) reduces the
likelihood of yielding a truncated assertion. The reason is
that the second-to-last line of the Stacked Shortcut algorithm
can only grow the hypothetical root causes.

Finally, note that both Shortcut and Stacked Shortcut are
linear in the number of parameters, a very useful property
when there are hundreds of parameters.

4.2 Finding bugs with inequalities: debugging
decision trees

While the Shortcut and Stacked Shortcut algorithms can find
a single minimal definitive root cause very efficiently, usu-
ally without truncation (as we will see in the experimental
section), characterizing all minimal definitive root causes is
challenging. For this purpose, we use an algorithm, called
debugging decision trees, that can characterize inequalities
aswell as equalities, thus potentially capturing an unbounded
number of minimal definitive root causes. In the worst case,
debugging decision trees may require a number of instances
that is exponential in the number of parameters, but in prac-
tice they locate bugs even with a small budget [42].

A debugging decision tree uses the parameters of the
pipeline as features and the evaluation of the instances as
the target. Thus a leaf is either purely succeed, if all
pipeline instances so far tested that lead to that leaf eval-
uate to succeed; or fail, if all pipeline instances leading
to that leaf evaluate tofail; ormixed, if there are some fail-
ing and some succeeding instances. The algorithm (detailed
in Algorithm 3) works as follows:

1. Given an initial set of instances CP I , construct a deci-
sion tree based on the evaluation results (succeed or
fail) for those instances. An inner node of the decision
tree is a triple (Parameter,Comparator,Value), where the
Comparator indicates whether a given Parameter has a
value equal to, unequal to, less than, or greater than or

Algorithm 3: Debugging Decision Trees pseudo-code.
Intuitively, find each pure failing path π and test
instances that satisfy the conditions of π . If an instance
consistent with π succeed then rebuild the tree. Oth-
erwise assert that π is a minimal root cause.
Input: CP I , the set of pipeline instances
Input: E , the evaluation function
Input: P , list of parameters
Output: D, asserted minimal definitive root cause

1 D ← ∅;
2 rebuild = true;
3 while rebuild do
4 rebuild = false;
5 T ← decision_tree(CPI);
6 Let � be the set of paths in T that fail; /* Each node

in a path is triple (p,c,v) triples,
for Parameter p, Comparator c, Value
v */

7 for π ∈ � do
8 Let each Vp be the set of all values for p in CP I , ∀p ∈ P;
9 for (p, c, v) ∈ π do

10 case c is = do
11 Vp ← {v};
12 end
13 case c is �= do
14 Vp ← Vp − {v};
15 end
16 case c is < do
17 Vp ← {x ∈ Vp|x < v};
18 end
19 case c is ≥ do
20 Vp ← {x ∈ Vp|x ≥ v};
21 end
22 end

/* Try instances that satisfy π */
23 for CPi ∈ ∏

Vp
p∈P

do

24 if E(CPi ) = succeed then
25 rebuild = true;

/* π is not a failing path */
26 end
27 CP I ← CP I ∪ {CPi };
28 if not rebuild then
29 D ← D ∪ π ;

/* π is a minimal root cause */
30 end
31 end
32 end
33 end
34 return D

equal to Value. See Fig. 2 for an example based on the
initial history.

2. If a conjunction involving a set of parameters, say, P1
P2, and P3, leads to a consistently failing execution (a
pure leaf in decision tree terms), then that combination
becomes a suspect.

3. Each suspect is used as a filter in a Cartesian product
of the parameter values from which new experiments
will be sampled. For example, consider the failing leaf

123



BugDoc iterative debugging...

Fig. 2 The decision tree on the left is fitted on the instance history of
Example 4 presented in Table 3. The decision tree on the right includes
the new instances created by the Debugging Decision Trees algorithm
in Table 4

corresponding to the conjunction Test Size < 0.3
and Dataset = Dataset 2 and Imputer Strategy
= Mean. We would want to test different values of the
Estimator to see whether that path is always leading to
failure.

Generalizing from the example, step 3 works as follows.
Suppose a failing path consists of general comparators (e.g.,
P1 = v1, P2 = v2, and P3 > 6), then the algorithm chooses
satisfying values for each of those parameters as a prototype,
and chooses pipeline instances having those values (e.g.,
pipelines in which P1 = v1, P2 = v2, and P3 ∈ {7, 8, 9, ...})
by varying values of other parameters, e.g. P4, P5, .... Note
that new instances can be created by a cartesian product of the
values seen so far. The pseudo-code shows this in Line 23
of Algorithm 3. Heuristically, BugDoc uses combinatorial
design [18]. Alternatively, one could apply interpolation for
continuous parameters and define parameter domains for
non-bounded inequalities.

If any of the newly generated instances results in
succeed then the suspected path does not always lead to
fail. Reflecting that,BugDoc rebuilds the decision tree tak-
ing into account the whole set of executed pipeline instances
CP I , which now includes the new instances.

When the values associated with a parameter are continu-
ous,BugDoc starts by choosing the values already attempted.

Further analysis can sample other values to uncover addi-
tional bugs, but, as mentioned above, our purpose here is to
understand the problems already uncovered rather than to
verify the software which is of course undecidable in general
[7].

Note that BugDoc uses decision trees in an unusual way.
Weare not trying to predictwhether an untested configuration
will lead to succeed or fail, but simply use the tree to
discover paths, possibly including inequalities, that lead to
fail. Those will be our suspects. For that reason, we build
a complete decision tree, i.e., with no pruning.

Below we revisit Example 4 and the initial set of pipeline
execution in Table 1 to illustrate how the Debugging Deci-
sion Trees algorithmworks.Additionally,we introduce a new
numerical parameter, the size of the test data, to compute the
pipeline score, as depicted by Table 3.

A decision tree is created from the instances shown in
Table 3, containing a single node, as shown in the left
decision tree of Fig. 2, with the parameter-value only seen
in failing instances: (Estimator,Gradient Boosting). After
assembling new configurations with this parameter-value,
the Debugging Decision Trees algorithm observes that some
of the generated pipeline instances succeed, as depicted
in Table 4. Hence, the hypothesis that Estimator with
value “Gradient Boosting” causes failure is invalid. So, the
decision tree is rebuilt, fitted on the instances of Table 4.
After rebuilding, the algorithm finds a new tree with two
paths leading to fail, as shown in the right decision
tree of Fig. 2. This presents two new hypothetical root
causes:

(i) (Test Size, ≥ ,0.3).
(ii) (Test Size, < ,0.3) and (Dataset,=,Dataset 2) and

(Imputer Strategy,=,Mean).

Debugging Decision Trees creates new pipeline instances
based on the root cause candidates, which all fail as can
be seen in Table 5. This confirms the candidate hypotheses,
which are output as definitive root causes.

Table 3 Set of classification
pipelines instances from
Example 4 with an additional
numerical parameter, Test
Size

Dataset Imputer strategy Estimator Test Size Score Evaluation Origin

Dataset 1 Mean Logistic regression 0.1 0.9 succeed Provenance

Dataset 2 Frequency Decision tree 0.1 0.8 succeed Provenance

Dataset 2 Mean Gradient boosting 0.4 NAN fail Provenance

Dataset 1 Frequency Gradient boosting 0.3 0.2 fail Provenance

Dataset 3 Mean Decision tree 0.2 0.7 succeed Provenance

Dataset 3 Frequency Logistic regression 0.2 0.9 succeed Provenance

123



R. Lourenço et al.

Table 4 Set of classification pipelines instances including the new instances created by Debugging Decision Trees based on parameter-value
(Estimator, =, Gradient Boosting)

Dataset Imputer strategy Estimator Test Size Score Evaluation Origin

Dataset 1 Mean Logistic regression 0.1 0.9 succeed Provenance

Dataset 2 Frequency Decision tree 0.1 0.8 succeed Provenance

Dataset 2 Mean Gradient boosting 0.4 NAN fail Provenance

Dataset 1 Frequency Gradient boosting 0.3 0.2 fail Provenance

Dataset 3 Mean Decision tree 0.2 0.7 succeed Provenance

Dataset 3 Frequency Logistic regression 0.2 0.9 succeed Provenance

Dataset 3 Mean Gradient boosting 0.2 0.9 succeed Testing gradient boosting

Dataset 3 Mean Gradient boosting 0.1 0.8 succeed Testing gradient boosting

Dataset 1 Frequency Gradient boosting 0.2 0.9 succeed Testing gradient boosting

Dataset 1 Frequency Gradient boosting 0.1 0.8 succeed Testing gradient boosting

Dataset 2 Mean Gradient boosting 0.2 NAN fail Testing gradient boosting

Dataset 2 Mean Gradient boosting 0.1 NAN fail Testing gradient boosting

Dataset 3 Frequency Gradient boosting 0.4 0.5 fail Testing gradient boosting

Dataset 3 Mean Gradient boosting 0.3 0.4 fail Testing gradient boosting

Dataset 3 Mean Gradient boosting 0.4 0.4 fail Testing gradient boosting

Dataset 1 Frequency Gradient boosting 0.4 0.5 fail Testing gradient boosting

Dataset 1 Mean Gradient boosting 0.3 0.3 fail Testing gradient boosting

Dataset 2 Frequency Gradient boosting 0.4 0.5 fail Testing gradient boosting

Dataset 2 Mean Gradient boosting 0.3 NAN fail Testing gradient boosting

Dataset 2 Frequency Gradient boosting 0.3 0.3 fail Testing gradient boosting

Table 5 Set of new classification pipelines instances created by Debugging Decision Trees based on paths [Dataset, = ,Dataset 2),
(Imputer Strategy, = ,Mean)] , and [(Test Size, ≥, 0.3)]

Dataset Imputer Strategy Estimator Test Size Score Evaluation Origin

Dataset 3 Frequency Decision Tree 0.3 0.3 fail Testing Test Size ≥ 0.3

Dataset 1 Frequency Decision Tree 0.3 0.4 fail Testing Test Size ≥ 0.3

Dataset 3 Mean Logistic Regression 0.4 0.5 fail Testing Test Size ≥ 0.3

Dataset 1 Mean Logistic Regression 0.3 0.4 fail Testing Test Size ≥ 0.3

Dataset 2 Frequency Gradient Boosting 0.3 0.4 fail Testing Test Size ≥ 0.3

Dataset 2 Mean Decision Tree 0.4 NAN fail Testing Test Size ≥ 0.3

Dataset 2 Mean Decision Tree 0.1 NAN fail Testing Dataset 2 and Mean

Dataset 2 Mean Decision Tree 0.2 NAN fail Testing Dataset 2 and Mean

Dataset 2 Mean Logistic Regression 0.1 NAN fail Testing Dataset 2 and Mean

Dataset 2 Mean Logistic Regression 0.2 NAN fail Testing Dataset 2 and Mean

5 Finding causal data errors: opportunistic
group testing

The algorithms in Sect. 4 identify computational steps that
cause a particular behavior, and thus make it easier for users
to find potential bug. When a definitive root cause contains
a parameter-value that corresponds to a tabular dataset, we
would also like to identify the part of the dataset that may be
responsible for the failure.

In this section, we introduce a new heuristic approach to
this problem. The idea behind our heuristic is to look for
values that are very different in the failed dataset instance
(a “value” of this dataset parameter) from the succeeding
dataset values.

Definition 8 (Dataset Parameter) A parameter Pd of a com-
putational pipeline is a dataset parameter if it semantically
represents a data table. Any value (an instance of that table)
of Pd must have the same schema and must have a key field
or fields.

123



BugDoc iterative debugging...

Definition 9 (Key Score) Let B be a value (an instance of a
table) of a dataset parameter Pd such that (Pd , B) is part of
a minimal definitive root cause of failure. Let G1, G2, ... and
Gn be values of Pd that are not in any root cause. That is,
(Pd ,Gi ) corresponds to values of data table Pd in successful
pipeline instances and (Pd , B) represents a data table in a
failing pipeline instance.

Let (Pd , B)(k).c be the value of a field in column c in table
(Pd , B) corresponding to a row identified by key k; similarly
for (Pd ,Gi )(k).c for i ∈ {1, 2, .., n}. We then measure a
deviation score per key value. Large deviation scores cor-
respond to extreme value differences between the good and
bad files, e.g., in the good file a person has an age of 53 and
in the bad file that person has an age of 353.

Different methods can be used to derive a deviation score.
As a concrete example, the deviation score we use for numer-
ical columns in the case study we discuss in Sect. 8 is based
on contrasting the value of the bad file Pd .B at some key
value k and column c (the (Pd , B)k.c value for short) with
all the good files. Specifically, the method compares the bad
file’s (Pd , B)k.c value with the minimum and maximum of
the (k.c) values of the good files.

For example, if the values for (k.c) in the good tables
range from 40 to 60 and the bad table’s (Pd , B)k.c value is
75, then the deviation score will be 15 (15 above 60). If the
(Pd , B)k.c value is 50, then the score will be 0 (because it’s
in the range of 40 to 60). If the (Pd , B)k.c value is 23, then
the score will be 17 (because 23 is 17 below 40).1

Thus, for our case study, the deviation score of the
(Pd , B)k.c value is how much greater than the maximum
of the good table values or less than the minimum of the
good table values that value deviates from the values of the
c columns for key k in the good tables. This simple idea is
expressed in the following expression. Please check it against
the example of the previous paragraph.

d = (max(

0,

((Pd , B)(k).c − max
i∈{1,2,..,n}((Pd ,Gi )(k).c)),

(( min
i∈{1,2,..,n}((Pd ,Gi )(k).c)) − (Pd , B)(k).c)))

)

For the purpose of the measure of our case study, null
values are given extreme negative values. That way, if there
are nulls in both the good and bad key k column c field, there
the (k.c) value will yield a small deviation score. If only the
bad file’s (k.c) value is null, there will be a large deviation

1 Though we don’t use it in the case study, a related score is relative
deviation, e.g., expressed as the score divided by the mean of the good
k.c values.

score. We apply this also to categorical columns, so a null in
just the bad file will look to be an extremely deviant value.

Let S be a list of keys in the bad file instance (Pd , B) in
descending order of deviation scores for a given column c.
To find the values of (Pd , B).c that might have caused the
failure, the Opportunistic Group Testing protocol uses binary
search. It first replaces all of them by (Pd ,Gi ).c, for some
i , maintaining the key association with each c value. If that
results in a successful execution, then the protocol replaces
only the c values associated with the first half of S (those
with the highest deviation scores). If the pipeline instance
again succeeds, then the protocol takes the top quarter of
S and so on. The goal is to find a relatively small set of
keys in (Pd , B) associated with the highest deviation scores
for column c whose replacement would create a successful
pipeline instance.Whatever produced those bad valuesmight
be the reason for the observed failure.

Deviant values We call the key-values associated with fail-
ing instances, deviant values. The failing data tables in the
root causes found in Sect. 4.2 contain deviant values in cer-
tain columns thatOpportunistic Group Testing has identified.
Dataset 1hasmissing or null values in a numeric columnwith
continuous values. By contrast,Dataset 2 has missing values
in a categorical column.

Wediscuss the application ofOpportunisticGroupTesting
for our case study in Sect. 8.3.1.

6 Leveraging pipeline topology: selective
instrumentation

In Sect. 3, we introduced the notion of an evaluation func-
tion that determines whether a pipeline instance “succeeds”
or “fails”. In a practical implementation, which we discuss
in Sect. 8, this evaluation function is executed after each
pipeline instance is executed, as a side effect.

Evaluation functions can also be added to different stages
of a pipelines to reduce the search space of pipeline instances
to consider when debugging. In this section, we propose
selective instrumentation, a new strategy to automatically
recommend nodes in a pipeline graph to be instrumented,
and show how this instrumentation improves performance by
reducing the number of parameter-value combinations that
need to be explored.

Recall that a computational pipeline consists of a directed
graph G = (N , E) of nodes and edges, with a set of end
nodes, denoted END. Each node may be associated with
one or more parameters, each of which can have many pos-
sible values. The nodes in paths leading to a node n, denoted
nodes_to(n), are the set of nodes in G starting from any root

123



R. Lourenço et al.

Fig. 3 Example of data pipeline. The END nodes are N8 and N5

of G that belong to a path that ends at n.

nodes_to(n) = {m|m ∈ N and m ∈ leads_to(n)}

Let the parameters associated with a node m be denoted
params(m). The parameters that could influence the output
of n are:

params_to(n) = {params(m)|m ∈ nodes_to(n)}

Some of the parameters in params_to(n) may influence
END independently of n, i.e., there may be paths to one
or more nodes of END that do not go through n. For that
reason, we form a new set called the exclusive parameters
to n. These are the parameters p in nodes m for which every
path from m to any node in END goes through n:
exclusive_to(n) = {p|p ∈ params_to(n) and for each
nodem such that p ∈ params(m), every path fromm to any
node in END goes through n}

Suppose an evaluation function eval(n) is inserted at node
n. We want eval(n) to have the following isolation property:
if a pipeline instance fails at END but eval(n) returns suc-
cess, then any root cause of the failure at END cannot be
due to any parameters in exclusive_to(n). This will reduce
the search space for debugging.

Example 7 Consider the pipeline example in Fig. 3 and sup-
pose that the evaluation function is inserted at the output of
node N4. Then the isolation property suggests that any fail-
ure of that function cannot be caused by parameters exclusive
to N6, N7, N8 and N5, because values in those parameters
cannot affect the output of N4.

To help choose the best single node to instrument, we
define the Cartesian or cross-product of a sequence of param-
eters S = (p1, ..., p||S||) as:

cross(S) = values(p1)X ...Xvalues(p||S||)

where values(p) for some parameter p are the values for p
in the pipeline instances tried so far.

Take any ordering of exclusive_to(n) and call that
seq(exclusive_to(n)). An instrumentation at n would be
a test on the output of n with the isolation property. Now

consider the nodes where selective instrumentation is possi-
ble and call those POSS. Two heuristic considerations can
help decide which node in POSS to choose:

– Cover troublesome parameters: If some failures have
already been discovered and they involve some parame-
ter p, it may be of benefit to choose a node n such that
p ∈ exclusive_to(n).

– Search space reduction: If no failures have been discov-
ered, we want to do a selective instrumentation at n in
POSS if the size of the set of parameter combinations
can be minimized. That is, it would be good to minimize

||cross(seq(exclusive_to(n)))|| +
||cross(seq(ALLP ARAMS − exclusive_to(n)))||

where ALLP ARAMS are all the parameters of the
workflow. Thus, choosing the best n to instrument can
be determined by:

argminn∈POSS ||cross(seq(exclusive_to(n)))|| +
||cross(seq(ALLP ARAMS − params_to(n)))||

Given a node or set of nodes for selective instrumenta-
tion, the next question is how to use it (respectively, them) to
achieve more efficient testing. For purposes of illustration,
assume there is just one end node e and a node n in a pipeline
associated with an instrumentation function. In that case, we
derive one set of tests for the parameters exclusive to n and
then another set for all other parameters.

Suppose that P1, P2, P3 are exclusive to n and the
other parameters are P4 to P10. BugDoc can useDebugging
Decision Trees for P1, P2, P3 considering the evaluation
function on n alone. (BugDoc will even cut off the compu-
tation of each instance after the evaluation at n.) Debugging
Decision Trees may identify combinations of bad values
among these three parameters. Human debuggers can then
resolve those.

By the isolation property, when the evaluation of n indi-
cates success for some pipeline instance, then any failure
of that instance will be due to some combination of values
of the remaining parameters P4 to P10. So, after finishing
with P1, P2, and P3, BugDoc fixes some set of values on
those parameters that leads to success at node n.BugDoc uses
Debugging Decision Trees on P4 to P10 and the evaluation
function on end node e.

7 System design and implementation

Figure 4 shows the high-level architecture of BugDoc.
Given (i) a computational pipeline description, consisting

123



BugDoc iterative debugging...

Fig. 4 BugDoc: overview of the approach

collection of programs connected together and an associated
set of manipulable parameters; (ii) a set of pipeline instances,
i.e., the history of the pipeline that contains values for the
parameters of all pipeline runs and their outcome; and (iii)
an arbitrary evaluation function that determines whether the
pipeline results are acceptable or not, our goal is to find the
minimal root causes of these results by iteratively execut-
ing new pipeline instances. While instances can be manually
derived by users running instances of the workflow, an initial
set of experiments can also be generated by random combi-
nations of parameter values, or combinatorial design [18].

Intuitively, all debugging algorithms presented in Sect. 4
work as follows. Given an initial set of instances, some
of which lead to bad outcomes, the algorithms generate
new parameter-value configurations (from the same uni-
verse) for the suspect instances and combine them with
parameter-values that led to good outcomes. This approach
has the benefit of swiftly eliminating hypothetical minimal
root causes that are not confirmed by the newly generated
instances.

Iterative Debugging In operation, BugDoc first runs the
Stacked Shortcut algorithm. Stacked Shortcut applies heuris-
tics to select and test combinations of parameter-value pairs.
As discussed in Sect. 4, under reasonable assumptions,
Stacked Shortcut finds minimal definitive root causes, using
a number of pipeline instances proportional to the number of
parameters.

When there are few parameters, BugDoc runs the Debug-
ging Decision Trees algorithm—starting from the results of
the pipeline instances run by the Stacked Shortcut algorithm
and using the parameters of the pipeline as features and the
evaluation of the instances as the target. BugDoc uses deci-
sion trees in an unusual way. We are not trying to predict
whether an untested configuration will lead to succeed or
fail, but use the tree to discover short paths, possibly char-
acterized by inequalities in parameter-values, that lead to
fail. Those will be our “suspects”. Unlike Stacked Short-
cut, Debugging Decision Trees can identify root causes that
depend on inequalities.

Parallelism The most time-consuming aspect of automated
debugging is the execution of pipeline instances. Fortu-
nately, each pipeline instance is independent. Hence different
instances can be run in parallel. However, such an approach
may lead to the execution of pipelines that are ultimately
unnecessary (e.g., if one pipeline instance shows that A.v is
not a definitive root cause, then further tests on A.v may not
be useful).When the search space is large, this extra overhead
turns out to be small, as we show in Sect. 9.2.

Distributed pipeline execution The implementation of Bug-
Doc is decoupled from the pipeline execution engine (which
is application specific). If several instances of the pipeline
execution engine are deployed in a distributed environment,
then a single BugDoc instance can manage them. BugDoc
can send pipeline instance specifications to the pipeline exe-
cution engines that execute them and return the results.

Explanation simplificationCauses for errors can includemul-
tiple parameters, each of which may have large domains. It
is thus essential to give concise explanations so that the user
can both understand and act on them. Because the results
of the Debugging Decision Trees algorithm consist of dis-
junctions of conjunctions, they may contain redundancies,
which BugDoc simplifies using the Quine-McCluskey algo-
rithm [32], which provides a method to minimize Boolean
functions. Because the algorithm is exponential and encodes
the Set Cover problemwhich is NP-complete, we use heuris-
tics that do not achieve complete minimality but still reduce
the size of the explanation.

Dataset debugging When there are root causes pointing
to input files representing datasets, we apply a two-step
debugging approach, first running BugDoc to explain the
parameter-values and then displaying visualizations with
meta-features and statistics about the data that could uncover
meaningful information about the pipeline behavior. This
step requires user interaction because BugDoc is agnostic
about the parameter semantics; therefore, dataset parameters
should be identified manually. With dataset annotation, in
addition to displayingdata profiles,we can applyOpportunis-
tic Group Testing and present data root causes as described
in Sect. 5.

Discussion The different algorithms of BugDoc can be used
separately or together, depending on the purpose of the appli-
cation. Either the Shortcut or the Stacked Shortcut algorithm
discovers definitive root causes (or bugs) consisting of a sin-
gle parameter-value (formally, parameter-equality-value) or
a single conjunction of parameter-values. Since these algo-
rithms find a definitive root cause within a single pipeline
instance, they provide a local explanation of the failure.
Debugging Decision Trees discover more complex defini-
tive root causes which may involve multiple parameters and
inequalities. If allowed to run to completion, they will pro-
vide a global explanation.

123



R. Lourenço et al.

Fig. 5 Case Study Pipeline. A data pipeline reads a file containing
product reviews written in given time period, computes ratings for each
product, and compares them with ratings computed in previous peri-
ods. An evaluation function was added to the pipeline (Assert node) to

make it debuggable by BugDoc. The arrows represent the properties of
the pipeline that change among different instances, which translates to
parameters for BugDoc

8 Case study: enterprise big data analytics

In a cooperative project with a large software company,
we applied BugDoc to a computational pipeline deployed
within the company. In this section, we present the pipeline,
described as a dataworkflow, and how it evolved in the course
of our experiments. We also discuss how BugDoc was inte-
grated with this specific environment, and how this process
can be used in general for different workflow systems. Last,
but not least, we discuss how BugDoc was used to debug the
workflow and find the root causes for the errors we encoun-
tered.

8.1 Workflow and experiment description

The workflow used for our case study is depicted in Fig. 5.
Node Read File reads a data file containing the values of 10
features for a product (identified by an unique id) measured
in a given period of the day. Each feature takes an integer
value between 0 and 10, or has a null value. Node Compute
rating uses the feature values to compute a rating value for
each product id and period, and the result is stored in a file
by node Write Ratings. Node Aggregate Ratings computes
the count of rating values aggregated by id and the result is
stored in a file by nodeWrite Aggregate. NodeRead Previous
Ratings accesses the aggregate ratings of the previous day
which are then compared with the aggregate ratings of the
current day (when they are available) by node Assert which
returns either a value “succeed” or “fail.” The result value is
stored in a file by node Write Assertion.

The evaluation function for pipeline instances is computed
by node Assert. Nodes Read Previous Ratings and Multi-
plexer are used to integrate the evaluation function with the
rest of the pipeline. Node Write Assertion is distinct from
Assert for the sake of modularity.

We tracked the execution of this pipeline, which ran daily,
for three months. During this period, some changes were
made to the Compute Ratings script. Initially, the program
computed a weighted sum of the 10 features and divided that
value by the maximum possible value, which is 10 × 10.
In the weighted sum, a null value is counted as 0. Then the
resulting value (a number between 0 and 1) was categorized
into two values: B (for Bad) and G (for Good).

A first change was to ignore features with null values in
the weighted sum and to normalize the weighted sum by
dividing it by 10 × N , where N is the number of non-null
feature values.

The second modification of the pipeline consisted in cat-
egorizing the normalized weighted sum into 4 values: VB
(for Very Bad), B (for Bad), G (for Good) and VG (for
Very Good). However, the program for node Assert was
unchanged: it only compared the aggregated count values
for G and B ratings regardless of the changes made to the
Compute Rating program. If the ratio of the number of G
and B values per product id was beyond a given threshold,
the pipeline instance was considered to have “failed”. This
lack of coordination is typical of a real-world situation where
the version of a software component c evolves, but another
component c′ that depends on c does not evolve in tandem.

123



BugDoc iterative debugging...

8.2 Integrating BugDocwith a third-party workflow

The enterprise workflow ran in production every day, suf-
fered from bugs that manifested in different ways, and made
use of input data files that sometimes were the same as the
previous day’s output data files. To find root causes, Bug-
Docmust be able to create and run configurations that might
involve both programmatic elements and data files from the
same or different days, have a clear indicator of success or
failure, and to do all this without disturbing production runs.
To enable debugging for this workflow, we followed the fol-
lowing steps:

– We created a sandbox environment in which (i) config-
urations can be run without disturbing the production
flow, and (ii) a function that indicates whether a run fails
or succeeds.

– For each day’s processing,we captured (i) the data inputs,
(ii) all program versions, parameter, and hyperparameter
settings, (iii) all data outputs, and (iv) an indication of
success or failure.

– We represented theworkflow as a directed graph inwhich
each node represents either a data input or output or a
process. An edge from node n to n′ represents the flow
from the output of n to the input of n′. Further each node
is associated with a group of user-settable parameters.

Clearly, setting up a sandbox environment can be time
consuming, but systematic manual debugging would require
the same setup. Enterprises commonly deploy development
and test sandbox environments separately from production
environments.While keeping all data inputs and data outputs
aswell as programversions and parameter settings does incur
additional space overhead, the benefit is that it allows the
discovery of minimal root causes.

Concretely, here is howwe achieved this setup for the case
study. Pipelines/workflows at the company are specified in a
JSON format and are deployed and executed on the cloud.
Each pipeline instance is a directed graphG, and each node of
G is associated with a set of parameters. In addition, there are
global parameters that can be accessed by any node. Some
parameters are the names of files that can be shared among
pipeline instances and can be edited by other pipelines or
external actors, and thus the same file name can take on dif-
ferent values. That is why we consider a file name to be a
parameter and an instance of that file name to be a value.

We parsed the JSON specification of every pipeline
instance that was run to extract both the topology of the
pipeline as well as all the parameters and their values. The
parsing procedure identified dozens of parameters, but only
four of themwould change among instances: Date, that rep-
resented the input file to be read by node Read File; Script
1, the program code to compute the ratings; Script 2, the

code to aggregate the ratings; and Previous Date, that indi-
cates which previous aggregate ratings to read.

The requirement to keep the output files comes from the
fact that an output file of one day can be the input file of the
next. Specifically, the node Read Previous ratings retrieves
the output of the previous day. To enable that, we introduced a
global parameter, denoted “graph_handle”, into the pipeline
to retrieve the address of the appropriate files to read.

The sandbox environment could run any pipeline instance
(consisting of various program versions and parameter set-
tings) specified by BugDoc and would report success or
failure.

8.3 Debugging the workflow

We applied BugDoc in chronological order, never using val-
ues from runs executed after a failing day f , to analyze the
root causes of the failure at f . The reasoning is that any root
cause at day f must involve the parameter-value universe up
to and including f , but no future days.

During the three-month period in which we observed the
workflow, the pipeline instances failed on seven days: March
22 and 23, April 1 and 10, and May 14, 15, and 16. For
each failing date, we ran BugDoc following the approach
described in Sect. 7, combining the Stacked Shortcut and
Debugging Decision Trees algorithms. In the seven applica-
tions of BugDoc to the failed pipeline instances, root causes
included settings of computational scripts and errors in data
files.

For example, regarding the failure that occurred on
March 22, BugDoc determined that the input dataset product
measurements that day was responsible for the failure. Con-
sequently, the aggregated ratings generated on the same day
was corrupted. BugDoc also determined that future execu-
tions of the pipeline would fail when computing their ratings
based on March 22 data (i.e., when Read Previous Rating
module used the March 22 output as a parameter-value). By
contrast, the ratings computed on March 23 would not cause
errors.

Regarding the failure on April 1, a new version of the
Compute Rating script caused an error for previous ratings
from March, even when using uncorrupted data. However,
this script did not propagate the error to future pipeline exe-
cutions.

The failure observed on April 10 was traced to another
spurious data input.

8.3.1 Use of opportunistic group testing

Because some of the errors involved data files, we invoked
Opportunistic Group Testing to find the offending records or
fields.

123



R. Lourenço et al.

For each bad (i.e., failure-inducing) data file F version,
we identified a minimal pair in which the only difference
between a successful computational instance and a failing
onewas the different version of F . For theMarch 22 error, the
file in question was aggregate ratings. Opportunistic Group
Testing identified a single product id whose rating caused an
error.

In this study, we observed different errors in a data gener-
ation process: the rating values changed from binary (good
or bad) to multiclass (very good, good, bad, very bad). This
represents a single column error. However, there could be
errors that straddle multiple columns. For example, the dif-
ference in values between two fields of a row could exceed
a certain threshold.

Outlier detection methods such as Isolation Forests [41]
can identify extreme values in columns or rows. However, it
does this on a per file instance basis, independently of the his-
tory of the file in question. By contrast,Opportunistic Group
Testing compares good file instances with bad file instances
on a key value-by-key value basis to identify rows whose
non-key fields have diverged significantly. The opportunistic
module performs a binary search, taking different divergence
scores thresholds in each iteration to filter columns and rows.

To assess the effectiveness of Opportunistic Group Test-
ing, we mixed two error-generating models inspired by the
industrial case study: one causes failures when there are
extreme values in a column, and the other causes failures
when there is an extreme subtractive difference between the
values in two columns. We controlled the number of rows
(keys in the case of single-column errors) affected by the
injected errors to compute the precision and recall of the
algorithm.Regardless of the number of affected rows,Oppor-
tunistic Group Testing obtained perfect recall and roughly
70% precision. That is, all problematic data were identified,
but roughly 30% of the data that were identified as problem-
atic were not in fact problematic. In Fig. 6, we compare the

Opportunistic Group Testing method with Isolation Forests
and observed that the precision and recall of the outlier detec-
tion decrease as the number of affected rows increases, i.e.,
as the corrupted values cease to be outliers.

8.3.2 Opportunity for selective instrumentation

Because the JSON description of the workflow provided the
graph relationship of the processes in the pipeline (Fig. 5),
selective instrumentation as described in Sect. 6 could have
been used to reduce the combinatorial explosion of configu-
rations to test when using debugging decision trees.

Consider again the pipeline in Fig. 5. Read File node is
the pipeline entry point, whereasWrite Ratings,Write Aggre-
gate, andGraph Terminator are output or END nodes. Thus,
the set nodes_to(Read Previous Ratings) contains the nodes:
Read File, Compute Rating, Aggregate Ratings, and Read
Previous Ratings itself.

Table 6 shows that the node Read Previous Ratings has
an exclusive parameter and hence could be a useful node
to instrument with a success/failure function to reduce the
search space.

9 Experimental evaluation

To evaluate the effectiveness of BugDoc, we compare it
against state-of-the-art methods for deriving explanations as
well as for hyperparameter optimization, using both real and
synthetic pipelines. We examine different debugging scenar-
ios, including when looking for a single minimal definitive
root cause and when there is a budget for the number of
instances that can be run. We also evaluate the scalability of
BugDocwhenmultiple cores are available to execute pipeline
instances in parallel, andwith respect to the number of param-
eters and values increase.

Fig. 6 Opportunistic Group Testing. The challenge here is to identify
the rows that are responsible for failure. Opportunistic Group Testing
always achieves 100% recall and precision of at least 69%, meaning
Opportunistic Group Testing sometimes accuses rows of responsibility

of failure unnecessarily. Using the default value of the contamination
parameter, Isolation Forest achieves different levels of recall and preci-
sion depending on the number of bad rows.OpportunisticGroup Testing
always has a better F-measure than Isolation Forest

123



BugDoc iterative debugging...

Table 6 Cardinality of the cartesian products of nodes of pipeline in Fig. 5

Node n params_to(n) exclusive_to(n) ||cross(seq
(exclusive_to(n)))||

||cross(seq
(ALLP ARAMS
−
exclusive_to(n)))||

Read file {Date} {} 0 4

Compute rating {Date, Script 1} {} 0 4

Aggregate ratings {Date, Script 1, Script 2} {} 0 4

Read previous ratings {Date, Script 1, Script 2, Previous date} {Previous date} 1 3

Baselines. Because no previous approach both creates new
instances and derives explanations, we compare BugDoc
against combinations of state-of-the-art methods. We use
DataX-Ray [55] andExplanationTables [22] to derive expla-
nations, and to generate instances used by all explanation
algorithms, we use both BugDoc and Sequential Model-
Based Algorithm Configuration (SMAC) [33]. SMAC is a
method for hyperparameter optimization that is often more
effective to search configuration spaces than grid search [8].
We also ran experiments using random search as an alterna-
tive, i.e., randomly generating instances and then analyzing
them. However, the results were always worse than those
obtained using SMAC or BugDoc. Therefore, for simplicity
of presentation and to avoid cluttering the plots, we omit the
random search results.

The explanation approaches analyze the provenance of the
pipelines, i.e., the instances previously run and their results,
but do not suggest new ones. By contrast, SMAC iteratively
proposes new pipeline instances, but it always outputs the
best complete pipeline instance it can find given a budget
of instances to run and a criterion. This procedure makes
sense for SMAC’s primary use case, which is to find a set
of parameter-values that performs well, but it is less helpful
for debugging because it does not attempt to find a minimal
definitive root cause. For example, if a minimal definitive
root cause of a pipeline is that parameter Pi must have a
value of 5, SMAC might return a pipeline instance that fails,
which includes Pi set to 5. But since the pipeline may have
other parameter-values, the user has no way of knowing that
Pi = 5 is the minimal definitive root cause and thus gains
little insight into how to rectify the bug.

To give the explanation methods a reasonable chance to
find minimal root causes, we combine the explanations with
the generative techniques. We apply Data X-Ray and Expla-
nation Tables to suggest root causes for the pipeline instances
generated by SMAC, and also feed both methods with the
instances created by BugDoc. Since SMAC looks for good
instances, mostly for machine learning pipelines, we change
its goal to look for bad pipeline instances.

Evaluation criteria We consider two goals: (i) FindOne—
find at least one minimal definitive root cause in each

pipeline; (ii)FindAll – find all minimal definitive root causes.
The use case for FindOne is a debugging setting where it
might be useful to work on one bug at a time, in the hope that
resolving one may resolve or at least mitigate others. The use
case for FindAll is a setting in which a team of debuggers can
work on many bugs in parallel. FindAll may also be useful
to provide an overview of the set of issues encountered. We
use precision and recall to measure quality. These are defined
differently for the FindOne case than for the FindAll case.

Formally, let CP be a pipeline (e.g., the pipeline repre-
sented at the top of Fig. 1) and CPi be some instance of
the pipeline (e.g., the CP4 of Fig. 1). The set of minimal
definitive root causes of CP is denoted R(CP). The set of
root causes asserted by an algorithm A on pipeline CP is
denoted A(CP). Our experiments are run over a large set of
pipelines UCP , each of which is associated with multiple
pipeline instances.

For the FindOne case, we check if A(CP) has at least
one actual root cause. Precision is the fraction of root cause
assertions where at least one minimal root cause is found.
Formally, the precision for FindOne is:

∑
CP∈UCP |A(CP) ∩ R(CP) �= ∅|

∑
CP∈UCP |A(CP) ∩ R(CP) �= ∅| + |A(CP) − R(CP)|

where A(CP)∩ R(CP) �= ∅ evaluates to 1 if A(CP) corre-
sponds to at least one of the conjuncts in R(CP). Recall for
FindOne is the fraction of the |UCP| pipelines for which a
minimal definitive root cause is found by A. (Note that all
UCP pipelines have at least one root cause.) The recall for
FindOne is thus:

∑
CP∈UCP |A(CP) ∩ R(CP) �= ∅|

|UCP| (1)

For FindAll, precision is the fraction of root causes that A
identifies that are, in fact, minimal definitive root causes.
The precision for FindAll is defined as:

∑
CP∈UCP |A(CP) ∩ R(CP)|

∑
CP∈UCP |A(CP)|

123



R. Lourenço et al.

Recall for FindAll is the fraction of all the R(CP) minimal
definitive root causes, for all CP ∈ UCP , that are found by
the algorithms:

∑
CP∈UCP |A(CP) ∩ R(CP)|

∑
CP∈UCP |R(CP)|

For both FindOne and FindAll, we also report the F-measure,
i.e., the harmonic mean of their respective measures of pre-
cision and recall.

F-measure = 2 × Precision × Recall

Precision + Recall

Our first set of tests allows BugDoc to run until it finds at
least one minimal definitive root cause using each of its algo-
rithms (Shortcut, Stacked Shortcut, andDebugging Decision
Trees).

The experiment then allocates the same number of
instances created in the previous step to all other methods.
Thus, the precision and recall for each algorithm is based on
the same instance budget.

In these tests, Data X-Ray and Explanation Tables are
given (i) the instances generated byBugDoc and, in a separate
test, (ii) the instances generated by SMAC.
Pipeline benchmark We have created synthetic data that
reflect typical pipelines in data science and computational
science, which often involve multiple components and asso-
ciated parameters. The pipelines vary in the number of
parameters and values from small to large, in order to reflect
the space of typical data science benchmarks. That is, the
synthetic pipelines are generalizations of the real pipelines
we have observed (see Sects. 8 and 9.3) along the following
dimensions: more parameters, more values, and more com-
plex bugs.

The goal of the benchmark is to see whether BugDoc
becomes more or less advantageous as the problem becomes
more complex. The parameter values are either ordinal (e.g.,
temperature) or categorical (e.g., color), each with probabil-
ity 1/2. Each synthetic pipeline consists of a parameter space
and a disjunctive definitive root cause consisting of conjunc-
tions generated as follows:

1. For each conjunction, given |P| parameters, we select a
subset of parameters of size i , chosen uniformly from 1
to |P|.

2. For each parameter in the subset, we choose one value v

chosen uniformly from its values.
3. For each numerical parameter, we choose from the com-

parators C = {=,≤,>, �=} with probability 1/4 (except
that we exclude > when value v is maximum).

4. Additional conjunctive root causes are included in the
set of minimal root causes with a certain probability that
varies with the experiment.

The example below illustrates the parameter space and the
definitive root cause for one of the synthetic pipelines.

Example 8 Apipeline having three parameters with four pos-
sible values each could be represented as follows:

– Parameter-Value Space: p1 ∈ [1.0, 2.0, 3.0, 4.0], p2 ∈
[1, 2, 3, 4], and p3 ∈ [

“p31′′, “p32′′, “p33′′, “p34′′].
– Minimal definitive Root Cause : (p1 = 4) or (p2 < 3.0
and p3 �= “p34′′).

Besides using the synthetic benchmark, we also evalu-
ate the debugging strategies on real-world computational
pipelines (see Sect. 9.3).

Implementation and experimental setup The current proto-
type of BugDoc contains a dispatching component that runs
in a single thread and spawns multiple worker processes to
run the new instances in parallel. In our experiments, we used
five execution engine workers to run the instances.

We used the SMAC version for Python 3.6. We also used
the code, provided by the respective authors, for both the
Data X-Ray algorithm (implemented in Java 7) [55] and
Explanation Tables [22] (written in Python 2.7). Since the
state-of-the-art baselines do not generate new tests, we use
the pipeline instances created by BugDoc as input to the fea-
ture model input of Data X-Ray. Separately, we converted
the pipeline instances created by SMAC as input to the fea-
ture model of Data X-Ray. Similarly, we used the pipeline
instances generated by both BugDoc and SMAC to populate
the database schema required by Explanation Tables.

All experiments were run on a Linux Desktop (Ubuntu
14.04, 32GB RAM, 3.5GHz × 8 processor). For purposes of
reproducibility and community use, we have made our code
and experiments available (https://github.com/ViDA-NYU/
BugDoc).

9.1 Synthetic pipelines

The results for the synthetically generated pipelines are
reported according to the characteristics of their definitive
root causes. The characteristics span three scenarios, con-
sisting of multiple pipelines and covering different lengths
of definitive root causes:

1. a single parameter-comparator-value triple;
2. a single conjunction of triples containing parameter-

comparator-value; and
3. a disjunction of conjunctions of parameter-comparator-

value triples.

123

https://github.com/ViDA-NYU/BugDoc
https://github.com/ViDA-NYU/BugDoc


BugDoc iterative debugging...

Fig. 7 Synthetic Pipelines. Metrics for the FindOne problem when the
root cause is a single parameter-value-comparator (top row, Fig. 7a, b,
and c), a single conjunction (middle row, Fig. 7d, e, and f), or a dis-
junction of conjunctions (bottom row, Fig. 7g, h, and i). In each figure,

the leftmost group uses as many instances as does Shortcut, the middle
uses as many as Stacked Shortcut, the rightmost as many as Debugging
Decision Trees

Fig. 8 Synthetic Pipelines. Metrics for the FindAll problem when the root cause is a disjunction of conjunctions (Fig. 8a, b, and c). In each
sub-figure, the leftmost group uses as many instances as does Shortcut, the middle group as many Stacked Shortcut, the rightmost as many as
Debugging Decision Trees

These scenarios are useful to assess the generality and expres-
siveness of the different approaches to explanation.

Precision, recall, and F-measure Figure 7 shows the preci-
sion, recall, and F-measure for the FindOne problem for the

three types of definitive root causes. In the horizontal axis
of each plot, we group all debugging methods by the maxi-
mum number of instances they were allowed to use to derive
explanations, i.e., the number of new instances it took Short-

123



R. Lourenço et al.

cut, Stacked Shortcut with four shortcuts, and Debugging
Decision Trees to solve the problem.

BugDoc’s algorithms outperform Data X-Ray and Expla-
nation Tables in all three scenarios, both when the baselines
use instances generated by BugDoc and by SMAC. If the
minimal root cause is a single parameter-comparator-value
(Fig. 7a, b, and c), Shortcut and Stacked Shortcut achieve
similar precision and recall to Debugging Decision Trees.
By contrast, Debugging Decision Trees dominates when the
minimal root causes are more complex. Recall that Debug-
ging Decision Trees may require a number of instances that
is exponential in the number of parameters in the worst case.
In these experiments, they perform well using combinatorial
design even with relatively small budgets.

Since we look for individual parameter-comparator-value
triples with Shortcut and disjoint patterns in the data with
decision trees, the likelihood that Shortcut does not find a
definitive answer is higher in the scenario where a defini-
tive root cause is a conjunction of factors, as can be seen in
the relatively lower recall in Fig. 7e. Conjunctions that are
composed of equalities and inequalities have a high proba-
bility of presenting configurations with the union property.
Hence the Shortcut and Stacked Shortcut algorithms gener-
ate more truncated assertions, and their precision score is
lower in Fig. 7d as compared to Fig. 7a and g. However,
the shortcut algorithms still give better performance than the
state-of-the-art algorithms.

Also note that in most cases, the state-of-the-art meth-
ods using instances generated by BugDoc outperform those
methods using the SMAC instances. This suggests that our
approach effectively proposes more useful test cases.

Similar relative results hold for the FindAll problem as
Fig. 8 shows. The non-minimal approach of Data X-Ray
pays off in this scenario when there are multiple reasons
for a pipeline to fail. However, Debugging Decision Trees
presents a better trade-off between precision and recall
(Fig. 8c).

DiscussionThe answers provided by Explanation Tables rep-
resent a prediction of the pipeline instance evaluation result
expressed as a real number, where 1.0 corresponds to a root
cause. The precision of Explanation Tables is always high,
but the recall is usually low. The converse happens with Data
X-Ray, whose precision is low, but the recall is high. The
reason for this is that Data X-Ray provides explanations that
are not minimal definitive root causes. Further, neither Data
X-Ray nor Explanation Tables support negation and inequal-
ity.

Because both Data X-Ray and Explanation Tables
achieved higher performance when using the instances gen-
erated by BugDoc than when using the instances generated
by SMAC, we omit the SMAC configurations from the case

Fig. 9 Synthetic Pipelines. Average logarithmic number of asserted
root causes per actual definitive root cause for each method. 0.0 on
this log scale means that a method asserts exactly one root cause per
definitive root cause. Both Stacked Shortcut and Debugging Decision
Trees are close to 0.0

studies with real-world pipelines presented later in this sec-
tion.

The takeaway message from the experiments is that Bug-
Doc dominates the other methods based on F-measure in
every case, with Debugging Decision Trees dominating the
shortcut methods unless the budget is small or the minimal
root cause(s) are parameter-equality-value pairs.

Conciseness of explanation Figure 9 shows that BugDoc’s
algorithms not only provide explanations that are more con-
cise in the number of parameters than Data X-Ray and
Explanation Tables but also that it does not assert more root
causes than there are.

9.2 Scalability of debugging algorithms

The primary computational cost for automated debugging is
the cost of running the pipeline instances. Figure 10 shows the
number of instances created by each of BugDoc’s algorithms
as a function of the number of parameters of the pipeline.
Shortcut and Stacked Shortcut increase linearly as expected.
Because the time performance of Debugging Decision Trees
has no simple relationship with root causes and could be
exponential with the number of parameters, the user should
choose Shortcut or Stacked Shortcut if there aremany param-
eters and instances are expensive to run.

Selective instrumentation Another strategy to reduce the
number of iterations is to use the Selective Instrumentation
strategy of Sect. 6. This entails inserting evaluation functions
within the pipeline. To evaluate the potential benefit of Selec-
tive Instrumentation on the number of generated instances,
we run BugDoc with and without instrumentation until both
approaches find all the root causes for synthetic pipelines
with a varying number of parameters. In these experiments,

123



BugDoc iterative debugging...

Fig. 10 Instances required to execute each algorithm as a function of
the number of parameters

Fig. 11 Instances required to execute BugDoc with and without Selec-
tive Instrumentation as a function of the number of parameters. As
explained in the text, the number of four-value parameters exclusive to
the node having the added evaluation function is half the total number
of parameters in each case. In every case, Selective Instrumentation
reduces the number of instances required for the Debugging Decision
Trees algorithm

each parameter has four possible values. The number of
parameters exclusive to the node having the added evaluation
function is half the total number of parameters in each case.
For example, for 32 parameters, 16 parameters are exclu-
sive to the node to which an evaluation function has been
added as illustrated in Fig. 12. Figure 11 shows that Selec-
tive Instrumentation reduces the number of instances needed
by Debugging Decision Trees to find all root cause in lin-
ear pipelines by approximately 70% across all numbers of
parameters.

Parallelism As noted above, the pipeline instances to test can
be run in parallel, but at some risk of unnecessary computa-
tion. To evaluate scalability, we re-execute the experiment
with synthetic data, described in Sect. 9.1, with different

Fig. 12 Illustration of a linear pipeline with instrumentation in the
center node (N3)

Fig. 13 Scalability of BugDoc when running the Debugging Deci-
sion Trees algorithm on multiple cores. As we increase the number of
workers responsible for running instances (cores), the green line shows
the maximum number of instances sent to each worker. That number
decreases nearly linearly with the number of cores. The red line shows
the total number of instances tested as the number of cores increases.
The red line shows that there is a very slight inefficiency, because in the
case of multiple cores, some instances are tested even after a hypothet-
ical root cause has been shown to be incorrect

numbers of parallel computational cores and checked how
many instances each core processed. As Fig. 13 shows,
the performance improvement is essentially linear with the
number of cores for the Debugging Decision Trees algo-
rithm solving the FindAll problem in which large numbers
of slightly different configurations must be explored. Thus
given sufficient computing power, evenDebugging Decision
Trees can explore relatively large parameter spaces.

9.3 Real-world pipelines

In addition to synthetic pipelines, we also evaluated the effec-
tiveness of BugDoc for pipelines used in real experiments.
Calculating recall for the discovery of minimal root causes
for real-world datasets is problematic because the set of all
minimal root causes (the ground truth) is unknown. Instead,
we compare BugDoc with the state-of-the-art baselines Data
X-Ray and Explanation Tables based on accuracy. Accuracy
is defined as the fraction of correct predictions on workflow
instances. A prediction about an instance is correct if the
prediction is that the instance will succeed (respectively,
fail) and the instance in fact does succeed (respectively,
fail).

123



R. Lourenço et al.

Table 7 Accuracy results comparing BugDoc with the state-of-the-art
black box algorithms on three real world datasets. Accuracy is percent-
age of instances predicted to succeed (respectively, fail) that actually
succeed (respectively, fail)

Accuracy
Pipeline BugDoc Data X-ray Explanation tables

Data polygamy 100% 92% 28%

GANs 100% 91% 95%

TPC-C 98% 70% 70%

We run BugDoc with the combination of Stacked Short-
cut and Debugging Decision Trees algorithms, all instances
created in this procedure are given as input to Data X-Ray
and Explanation Tables. We then generate random instances
to simulate a test set, and compute the accuracy of BugDoc
and the state-of-the-art baselines. Each method predicts that
an instance will fail if the instance is a superset of at least
one of minimal cause that the method finds. The results are
summarized in Table 7.
Evaluating the data polygamy framework Data Polygamy
aims to discover statistically significant relationships among
a large number of spatio-temporal datasets [16]. One of the
experiments described in [16] uses synthetically generated
datasets whose features are given as input parameters for the
experiment. This experiment is a good use case for BugDoc
because it has the following properties:

• The experiment requires a complex pipeline, includ-
ing steps for data cleaning, data transformation, feature
identification, multiple hypotheses testing, and other
activities.

• The processed data is heterogeneous, consisting of over
300 synthetic datasets at different spatio-temporal reso-
lutions that are created, filtered out, and aggregated in a
manner that depends on parameter settings.

• The parameter space is relatively large, consisting of 2
boolean, 3 categorical (3 to 10 possible values), and 7
numerical parameters.

• Each instance takes 20 minutes to run, making manual
debugging extremely time-consuming.

Each parameter can conceivably take on any value belong-
ing to its type (e.g., Integer or Boolean). Given a set of
pipeline instances, some of which crash and some of which
execute to completion, we sought minimal definitive root
causes consisting of combinations of parameter-valueswhich
cause the execution to crash (i.e., fail in the language of
BugDoc). We used those to establish the accuracy in deter-
mining whether so far unseen instances will fail or not.

BugDoc identified four root causes:

R.1 Percentage < 0
R.2 Percentage > 50
R.3 Diff < 0 and Percentage ≥ 0
R.4 Diff > 100 and Percentage ≥ 0

Note that while the Data Polygamy authors knew about
root causes R.1 and R.2, they were surprised to find out that
the parameterDiff out of the interval [0, 100] only affects the
pipeline execution negatively if Percentage is positive (R.3
and R.4).

Using these root causes, discoveredbasedon600 instances,
BugDoc predicted correctly (with 100% accuracy) which of
2000 randomly generated instances would lead to succeed
or fail. We used the same training and test set of instances
for the state-of-the-art algorithms. Data X-Ray had an accu-
racy 92%, and Explanation Tables 28%, which is consistent
with the lower recall this method displayed for inequalities
with synthetic data.
Training adversarial networks Generative adversarial net-
works (GAN) [27] are widely used for image generation and
semi-supervised learning [49,58]. Training these generative
models involves an expensive computational process with
several configuration parameters, such as the architecture
topology and a large number of hyperparameters. Sequence
model-based approaches likeBayesianOptimization are pro-
hibitively expensive in practice, since a single configuration
could take more than a week to train. The most extensive
study on the pathology of GAN training [12] entailed mod-
ifying baseline architectures and setting hyperparameters
manually over three months, using hundreds of cores of a
Google TPUv3 Pod [35]. Lucic et al. [45] evaluated seven
different GAN architectures and their hyperparameter con-
figurations, performing a random search in an experimental
setting that would take approximately 6.85 years using a sin-
gle NVIDIA P100.

We created a computational pipeline that trains a modi-
fied SAGAN [59] on CIFAR-10 [37] and applied BugDoc
to find root causes of one of the most common problems
of GAN training: mode collapse [13]. Our evaluation func-
tion sets a threshold on the Frechet Inception Distance (FID)
[30]metric, which is a proxy formode collapse. This pipeline
specified only 6 parameters, each limited to 5 possible values.
The bottleneck was the execution time because each configu-
ration requires approximately 10 hours to train, depending on
the discriminator and generator learning rates and the number
of steps. BugDoc found that mismatches between the num-
ber of steps and the loss function have the most significant
impact on FID.

We used the same training (created by BugDoc) and test
(randomly generated) sets of instances for the state-of-the-art
algorithms. BugDoc had an accuracy of 100%, Data X-Ray
91%, and Explanation Tables 95%.

123



BugDoc iterative debugging...

Transactional database performance DBSherlock [57] is
a tool designed to help database administrators diagnose
online transaction processing (OLTP) performance prob-
lems. DBSherlock analyzes hundreds of statistics and config-
urations from OLTP logs and tries to identify which subsets
of that data are potential root causes of the problems. In
their experiments, the authors ran different settings of the
TPC-C benchmark [53], introducing 10 distinct classes of
performance anomalies varying the duration of the abnormal
behavior. For each type of anomaly, they collected the work-
load logs, creating a dataset of logs, each labeled as normal
or anomalous.

This dataset was used by Bailis et al. [5] to demon-
strate Macrobase’s ability to distinguish abnormal behavior
in OLTP servers, where a classifier was trained to identify
servers presenting degradation in performance.

We ran BugDoc on this data to identify the root causes of
each class of performance anomaly. This experiment entailed
overcoming the challenge that data and results were given,
but not the actual computational pipeline. So it was not pos-
sible to run additional instances. We simulated the creation
of new instances by reading the results from the authors’
datasets when possible. Unfortunately, changing the value
of one parameter P1 while keeping another P2 fixed often
created a configuration that was not in the authors’ datasets.
So we focused on the 15 parameters for which there were
the most combinations in the dataset. We also bucketized the
values of each such parameter into 8 buckets using a decision
tree classifier to identify splitting points to each parameter
[21]

We split the dataset into three parts: 50% of the data were
used for training; 25% was the budget for pipeline instances
that any sub-method of BugDoc requested. BugDoc found
24 root causes

We tested those root causes on the 25% holdout to assess
accuracy. BugDoc was accurate 98% of the time, results that
are comparable to those reported in [5]. The baseline state-of-
the-art algorithms Data X-Ray and Explanation Tables were
not able to findminimal definitive root causes that could gen-
eralize for the holdout data because that required the ability
to handle inequalities. So they predicted that every instance
in the holdout set would result in succeed. In fact that was
true for 70% of the holdout set.

10 Conclusion

To the best of our knowledge, BugDoc is the first method that
autonomously finds minimal definitive root causes in black
box computational pipelines. BugDoc achieves this by ana-
lyzing previously executed computational pipeline instances,
selectively executing new pipeline instances, and finding
minimal explanations.

When each root cause is due to a single parameter-value
setting or a single conjunction of parameter-equal-value
triples, the shortcut methods of BugDoc can provably guar-
antee to find at least one root cause in time proportional to the
number of parameters (rather than exponential in the num-
ber of parameters as required by exhaustive search). Further,
the shortcut approaches are guaranteed to find at least a sub-
set of the parameter-values constituting a root cause in time
linear in the number of parameters. The shortcut techniques
are particularly useful when there are many, e.g. 15 or more,
parameters.

When there are few parameters or sufficient computation
time, the Debugging Decision Trees method of BugDoc per-
forms best.

In contrast to the state of the art, BugDocmakes no statis-
tical assumptions (as do Bayesian optimization approaches
like SMAC), but generally achieves better precision and
recall given the same number of pipeline instances. In all
cases, BugDoc dominates the other methods based on the
F-measure, though it may sometimes lose based on preci-
sion or recall individually.BugDoc parallelizeswell: pipeline
instances can be executed in parallel, thus opening up the
possibility of exploring large parameter spaces.

There are two main avenues we plan to pursue in future
work. First, we would like to make BugDoc available on
a wide variety of provenance systems that support pipeline
execution to broaden its applicability. To do this, we need to
incorporate several features into such a provenance system:

1. In order to create new configurations out of the ones
already run, BugDoc must have access to every value of
every user-settable parameter in the history of execution
instances.

2. In order to evaluate an execution instance, every execu-
tion instance, both historical and generated, should yield
a success or failure indication.

3. To capture historical dependency, each data instance
should have a timestamp so that if a failure occurs
at datetime d, BugDoc can limit the search among
parameter-values that appeared at or before d.

4. For opportunistic group testing to work, whenever a
parameter is a file, any distinct instance of that file should
be stored as a different value of that file.

5. For selective instrumentation to work, the provenance
system must be able to export a graphical description
of the workflow where each node is either an input or a
process and each edge indicates that the output of one
node feeds the input of another. In addition, the export
must associate parameters and values with each node.

Second, we would like to explore general (as opposed to
opportunistic group testing) group testing [38,46] to identify

123



R. Lourenço et al.

problematic data elements when a dataset has been identified
as a root cause.

Acknowledgements We thank the Data X-Ray and Explanation Tables
authors for sharing their code with us. We are also grateful to Fer-
nando Chirigati, Neel Dey, and Peter Bailis for providing the real-world
pipelines. This work has been supported in part by NSF grants IIS-
1916505, IIS-2106888, IOS-1339362, MCB-1158273, MCB-1412232,
and OAC-1934464; CNPq (Brazil) grant 209623/2014-4; the DARPA
D3Mprogram; andNYUWIRELESS.Any opinions, findings, and con-
clusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of funding agencies.

References

1. Alvaro, P., Rosen, J., Hellerstein, JM.: Lineage-driven fault injec-
tion. In: Proceedings of ACM SIGMOD, pp 331–346 (2015)

2. Artho, C.: Iterative delta debugging. Int. J. Softw. Tools Technol.
Transfer 13, 223–246 (2010)

3. Attariyan, M., Flinn, J.: Automating configuration troubleshooting
with confaid. login 36(1), 1–14 (2011)

4. Attariyan, M., Chow, M., Flinn, J.: X-ray: Automating root-cause
diagnosis of performance anomalies in production software. In:
Proceedings of USENIX OSDI, pp 307–320 (2012)

5. Bailis, P., Gan, E., Madden, S., Narayanan, D., Rong, K., Suri, S.:
Macrobase: Prioritizing attention in fast data. In: Proceedings of
ACM SIGMOD, pp 541–556 (2017)

6. Bala, A., Chana, I.: Intelligent failure prediction models for scien-
tific workflows. Expert Syst. Appl. 3, 980–989 (2015)

7. Berger, B., Rompel, J., Shor, P.W.: Efficient NC algorithms for set
coverwith applications to learning and geometry. J. Computer Syst.
Sci. 49, 454–477 (1994)

8. Bergstra, J., Bengio, Y.: Random search for hyper-parameter opti-
mization. JMLR 13, 281–305 (2012)

9. Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for
hyper-parameter optimization. In: Proceedings of NIPS, pp 2546–
2554 (2011)

10. Bergstra, J., Yamins, D., Cox, DD.: Making a science of model
search: Hyperparameter optimization in hundreds of dimensions
for vision architectures. In: Proceedings of ICML, pp 115–123
(2013)

11. Bleifuß T, Kruse S., Naumann, F.: Efficient denial constraint dis-
covery with hydra. Proceedings of VLDB Endowment 3, 311–323
(2017)

12. Brock, A., Donahue, J., Simonyan, K.: Large scale gan training for
high fidelity natural image synthesis. arxiv:1809.11096 (2018)

13. Che, T., Li, Y., Jacob, AP., Bengio, Y., Li, W.: Mode regularized
generative adversarial networks. arxiv:1612.02136 (2016)

14. Chen, A., Wu, Y., Haeberlen, A., Loo, BT., Zhou, W.: Data prove-
nance at internet scale: Architecture , experiences, and the road
ahead. In: Proceedings of CIDR, pp 1–7 (2017)

15. Chen, MY., Kiciman, E., Fratkin, E., Fox, A., Brewer, E.: Pinpoint:
Problem determination in large, dynamic internet services. In: Pro-
ceedings of IEEE DSN, pp 595–604 (2002)

16. Chirigati, F., Doraiswamy, H., Damoulas, T., Freire, J.: Data
polygamy: The many-many relationships among urban spatio-
temporal data sets. In: Proceedings of ACM SIGMOD, pp 1011–
1025 (2016)

17. Chu, X., Ilyas, I.F., Papotti, P.: Discovering denial constraints. Pro-
ceeding of VLDB Endowment 13, 1498–1509 (2013)

18. Colbourn, C.J., Martirosyan, S.S., Mullen, G.L., Shasha, D., Sher-
wood, G.B., Yucas, J.L.: Products of mixed covering arrays of
strength two. J. Comb. Des. 2, 124–138 (2006)

19. Dalibard, V., Schaarschmidt, M., Yoneki, E.: Boat: Building auto-
tuners with structured bayesian optimization. In: Proceedings of
WWW, pp 479–488 (2017)

20. Dolatnia, N., Fern, A., Fern, X.: Bayesian Optimization with
Resource Constraints and Production. In: Proceedings of ICAPS,
pp 115–123 (2016)

21. Dubey, A.: https://towardsdatascience.com/discretisation-using-
decision-trees-21910483fa4b. http://www.tpc.org/tpcc/, accessed:
2021-11-18 (2018)

22. ElGebaly,K.,Agrawal, P.,Golab, L.,Korn, F., Srivastava,D.: Inter-
pretable and informative explanations of outcomes. Proceedings of
VLDB Endowment 1, 61–72 (2014)

23. Fariha, A., Nath, S., Meliou, A.: Causality-guided adaptive inter-
ventional debugging. SIGMOD, https://doi.org/10.1145/3318464.
3389694 (2020)

24. Fraser, G., Arcuri, A.: Whole test suite generation. IEEE Transac-
tions Softw. Eng. 2, 276–291 (2013)

25. Galhotra, S., Brun, Y., Meliou, A.: Fairness testing: Testing soft-
ware for discrimination. CoRR pp 1–13, arxiv:1709.03221 (2017)

26. Godefroid, P., Levin, MY.,Molnar, DA.: Automated whitebox fuzz
testing. In: Proceedings of NDSS, p 151-166 (2008)

27. Goodfellow, IJ., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-
Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adver-
sarial networks. arxiv:1406.2661 (2014)

28. Gudmundsdottir, H., Salimi, B., Balazinska, M., Ports, DR., Suciu,
D.: A demonstration of interactive analysis of performance mea-
surements with viska. In: Proceedings of ACM SIGMOD, pp
1707–1710 (2017)

29. Gulzar, MA., Wang, S., Kim, M.: Bigsift: Automated debugging
of big data analytics in data-intensive scalable computing. In: Pro-
ceedings of ESEC/FSE, pp 863–866 (2018)

30. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter,
S.: Gans trained by a two time-scale update rule converge to a local
nash equilibrium. arxiv:1706.08500 (2017)

31. Holler, C., Herzig, K., Zeller, A.: Fuzzing with code fragments. In:
Proceedings of USENIX Security Symposium, pp 445–458 (2012)

32. Huang, J.: Programing implementation of the quine-mccluskey
method for minimization of boolean expression. CoRR pp 1–22,
arxiv:1410.1059 (2014)

33. Hutter, F., Hoos, HH., Leyton-Brown, K.: Sequential model-based
optimization for general algorithm configuration. In: Proceedings
of LION-5, pp 507–523 (2011)

34. Johnson, B., Brun, Y., Meliou, A.: Causal testing: finding defects’
root causes. CoRR pp 1–12, arxiv:1809.06991 (2018)

35. Jouppi, N.P., Young, C., Patil, N., Patterson, D., Agrawal, G.,
Bajwa, R., Bates, S., Bhatia, S., Boden, N., Borchers, A., Boyle,
R., Pl, Cantin, Chao, C., Clark, C., Coriell, J., Daley, M., Dau, M.,
Dean, J., Gelb, B., Ghaemmaghami, T.V., Gottipati, R., Gulland,
W., Hagmann, R., Ho, C.R., Hogberg, D., Hu, J., Hundt, R., Hurt,
D., Ibarz, J., Jaffey,A., Jaworski, A., Kaplan,A., Khaitan,H., Kille-
brew, D., Koch, A., Kumar, N., Lacy, S., Laudon, J., Law, J., Le, D.,
Leary, C., Liu, Z., Lucke, K., Lundin, A., MacKean, G., Maggiore,
A., Mahony,M.,Miller, K., Nagarajan, R., Narayanaswami, R., Ni,
R., Nix, K., Norrie, T., Omernick, M., Penukonda, N., Phelps, A.,
Ross, J., Ross, M., Salek, A., Samadiani, E., Severn, C., Sizikov,
G., Snelham, M., Souter, J., Steinberg, D., Swing, A., Tan, M.,
Thorson, G., Tian, B., Toma, H., Tuttle, E., Vasudevan, V., Walter,
R., Wang, W., Wilcox, E., Yoon, D.H.: In-datacenter performance
analysis of a tensor processing unit. SIGARCH Computer Arch.
News 2, 1–12 (2017)

36. Krishna,R., Iqbal,MS., Javidian,MA.,Ray,B., Jamshidi, P.:Cadet:
A systematic method for debugging misconfigurations using coun-
terfactual reasoning. arxiv:2010.06061 (2020)

37. Krizhevsky, A., et al.: Learning multiple layers of features from
tiny images. Tech. rep, Citeseer (2009)

123

http://arxiv.org/abs/1809.11096
http://arxiv.org/abs/1612.02136
https://towardsdatascience.com/discretisation-using-decision-trees-21910483fa4b
https://towardsdatascience.com/discretisation-using-decision-trees-21910483fa4b
http://www.tpc.org/tpcc/
https://doi.org/10.1145/3318464.3389694
https://doi.org/10.1145/3318464.3389694
http://arxiv.org/abs/1709.03221
http://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1706.08500
http://arxiv.org/abs/1410.1059
http://arxiv.org/abs/1809.06991
http://arxiv.org/abs/2010.06061


BugDoc iterative debugging...

38. Lee, KW., Pedarsani, R., Ramchandran, K.: Saffron: A fast, effi-
cient, and robust framework for group testingbasedon sparse-graph
codes. IEEE Transactions Signal Process. pp 1–10 (2015)

39. Lewis, D.: Counterfactuals. Wiley (2013)
40. Liblit, B., Naik, M., Zheng, A.X., Aiken, A., Jordan, M.I.: Scalable

statistical bug isolation. In Proceedings of ACM SIGPLAN 6, 15–
26 (2005)

41. Liu, FT., Ting, KM., Zhou, ZH.: Isolation forest. In: 2008 eighth
ieee international conference on data mining, IEEE, pp 413–422
(2008)

42. Lourenço, R., Freire, J., Shasha, D.: Debugging machine learning
pipelines. In: Proceedings of DEEM (2019)

43. Lourenço, R., Freire, J., Shasha, D.: Bugdoc: A system for debug-
ging computational pipelines. In: Proceedings of ACM SIGMOD
(Demo) (2020a)

44. Lourenço, R., Freire, J., Shasha, D.: Bugdoc: Algorithms to
debug computational processes. In: Proceedings ofACMSIGMOD
(2020b)

45. Lucic, M., Kurach, K., Michalski, M., Gelly, S., Bousquet, O.: Are
gans created equal? a large-scale study. arxiv:1711.10337 (2017)

46. Macula, A.J., Popyack, L.J.: A group testing method for finding
patterns in data. Discrete Appl. Math. 1–2, 149–157 (2004)

47. Meliou, A., Roy, S., Suciu, D.: Causality and explanations in
databases. PVLDB 13, 1715–1716 (2014)

48. Pearl, J.: Causality: Models, Reasoning and Inference, 2nd edn.
Cambridge University Press (2009)

49. Radford, A., Metz, L., Chintala, S.: Unsupervised representation
learning with deep convolutional generative adversarial networks.
arxiv:1511.06434 (2015)

50. Rezig, EK., Cao, L.„ Simonini, G., Schoemans, M., Madden, S.,
Tang, N., Ouzzani, M., Stonebraker, M.: Dagger: A data (not code)
debugger. In: CIDR2020, 10thConference on InnovativeData Sys-
temsResearch,Amsterdam,TheNetherlands, January12-15, 2020,
Online Proceedings, www.cidrdb.org, http://cidrdb.org/cidr2020/
papers/p35-rezig-cidr20.pdf (2020)

51. Snoek, J., Larochelle, H., Adams, RP.: Practical bayesian optimiza-
tion of machine learning algorithms. In: Proceedings of NIPS, pp
2951–2959 (2012)

52. Snoek, J., Rippel, O., Swersky, K., Kiros, R., Satish, N., Sundaram,
N., Patwary, MMA., Prabhat, P., Adams, RP.: Scalable bayesian
optimization using deep neural networks. In: Proceedings of the
ICML, pp 2171–2180 (2015)

53. TPC (2019) Tpc-c benchmark. http://www.tpc.org/tpcc/, accessed:
2020-02-10

54. Van Aken, D., Pavlo, A., Gordon, GJ., Zhang, B.: Automatic
database management system tuning through large-scale machine
learning. In: Proceedings ofACMSIGMOD, pp 1009–1024 (2017)

55. Wang, X., Dong, XL., Meliou, A.: Data x-ray: A diagnostic tool
for data errors. In: Proceedings of ACM SIGMOD, pp 1231–1245
(2015)

56. Wang, X., Meliou, A., Wu, E.: Qfix: Diagnosing errors through
query histories. In: Proceedings of ACM SIGMOD, pp 1369–1384
(2017)

57. Yoon,DY.,Niu,N.,Mozafari, B.:Dbsherlock:Aperformance diag-
nostic tool for transactional databases. In: Proceedings of ACM
SIGMOD, pp 1599–1614 (2016)

58. Zhang, H., Xu, T., Li, H., Zhang, S.,Wang,X., Huang, X.,Metaxas,
D.: Stackgan: Text to photo-realistic image synthesis with stacked
generative adversarial networks. In: Proceeding of ICCV, pp 5908–
5916 (2017)

59. Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention
generative adversarial networks. arxiv:1805.08318 (2018)

60. Zheng, AX., Jordan, MI., Liblit, B., Naik, M., Aiken, A.: Statis-
tical debugging: Simultaneous identification of multiple bugs. In:
Proceedings of ICML, pp 1105–1112 (2006)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1711.10337
http://arxiv.org/abs/1511.06434
www.cidrdb.org
http://cidrdb.org/cidr2020/papers/p35-rezig-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p35-rezig-cidr20.pdf
http://www.tpc.org/tpcc/
http://arxiv.org/abs/1805.08318

	BugDoc*-16pt
	Iterative debugging and explanation of pipeline*-9pt
	Abstract
	1 Introduction
	2 Related work
	3 Definitions and problem statement
	4 Debugging algorithms
	4.1 Looking for simple root causes: the shortcut algorithm
	4.2 Finding bugs with inequalities: debugging decision trees

	5 Finding causal data errors: opportunistic group testing
	6 Leveraging pipeline topology: selective instrumentation
	7 System design and implementation
	8 Case study: enterprise big data analytics
	8.1 Workflow and experiment description
	8.2 Integrating BugDoc with a third-party workflow
	8.3 Debugging the workflow
	8.3.1 Use of opportunistic group testing
	8.3.2 Opportunity for selective instrumentation


	9 Experimental evaluation
	9.1 Synthetic pipelines
	9.2 Scalability of debugging algorithms 
	9.3 Real-world pipelines

	10 Conclusion
	Acknowledgements
	References





